Technical Papers
Jul 6, 2018

Adjoint Equation-Based Inverse-Source Modeling to Reconstruct Moving Acoustic Sources in a One-Dimensional Heterogeneous Solid

Publication: Journal of Engineering Mechanics
Volume 144, Issue 9

Abstract

The need to reconstruct moving acoustic sources arises in many real-world applications—for example, smart highways for detecting the motions and weights of vehicles, and underwater acoustic forensics. Despite the usefulness of acoustic source inversion (ASI), to date, few papers have shown the feasibility of identifying unknown signal amplitudes and time-varying positions of moving acoustic sources of an arbitrary number within or on complex media without any prior knowledge about the sources. To fill this gap, this paper introduces a new computational framework for reconstructing spatial and temporal profiles of moving acoustic sources from wave responses measured at sparsely distributed sensors. To reconstruct acoustic source profiles without a priori knowledge of the sources, the presented ASI method employs discretization of source functions in space and time. The value of each discretized parameter is estimated at every iteration in the inversion procedure. Because of the high resolution of the discretization, the number of inversion parameters ranges in the hundreds of thousands in the presented numerical examples. To tackle such a large-scale inverse problem, a state-adjoint-control-equation-based optimization technique is employed. The finite-element method (FEM) is used to obtain wave responses in state and adjoint problems. Numerical experiments, in one-dimensional (1D) undamped heterogeneous solids, prove the robustness of this method by reconstructing spatial and temporal profiles, i.e., speeds, locations, frequencies, and magnitudes, of multiple dynamic moving loads. The accuracy of convergence toward the target in the numerical examples is excellent, reconstructing the spatial and temporal footprints of the sources.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This work was supported by the Burns Faculty Fellowship from the School of Engineering and the Grant-in-Aid program from the Office of the Graduate Studies at The Catholic University of America. This support is gratefully acknowledged.

References

Abazarsa, F., F. Nateghi, S. Ghahari, and E. Taciroglu. 2015. “Extended blind modal identification technique for nonstationary excitations and its verification and validation.” J. Eng. Mech. 142 (2): 04015078. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000990.
Altmann, J. 2004. “Acoustic and seismic signals of heavy military vehicles for co-operative verification.” J. Sound Vib. 273 (4–5): 713–740. https://doi.org/10.1016/j.jsv.2003.05.002.
Andreikiv, O. E., V. R. Skal's'kyi, and O. M. Serhienko. 2001. “Acoustic-emission criteria for rapid analysis of internal defects in composite materials.” Mater. Sci. 37 (1): 106–117. https://doi.org/10.1023/A:1012346624802.
Asgari, S., J. Z. Stafsudd, R. E. Hudson, K. Yao, and E. Taciroglu. 2015. “Moving source localization using seismic signal processing.” J. Sound Vib. 335: 384–396. https://doi.org/10.1016/j.jsv.2014.09.027.
Au, F., R. Jiang, and Y. Cheung. 2004. “Parameter identification of vehicles moving on continuous bridges.” J. Sound Vib. 269 (1): 91–111. https://doi.org/10.1016/S0022-460X(03)00005-1.
Bao, H., J. Bielak, O. Ghattas, L. F. Kallivokas, D. R. O’Hallaron, J. R. Shewchuk, and J. Xu. 1998. “Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers.” Comput. Methods Appl. Mech. Eng. 152 (1): 85–102. https://doi.org/10.1016/S0045-7825(97)00183-7.
Binder, F., F. Schöpfer, and T. Schuster. 2015. “Defect localization in fibre-reinforced composites by computing external volume forces from surface sensor measurements.” Inverse Prob. 31 (2): 025006. https://doi.org/10.1088/0266-5611/31/2/025006.
Bin-Mohsin, B., and D. Lesnic. 2017. “Reconstruction of a source domain from boundary measurements.” Appl. Math. Modell. 45: 925–939. https://doi.org/10.1016/j.apm.2017.01.021.
Biros, G., and O. Ghattas. 2005. “Parallel Lagrange-Newton–Krylov-Schur methods for PDE-constrained optimization. Part I: The Krylov-Schur solver.” SIAM J. Sci. Comput. 27 (2): 687–713. https://doi.org/10.1137/S106482750241565X.
Carpinteri, A., G. Lacidogna, and N. Pugno. 2007. “Structural damage diagnosis and life-time assessment by acoustic emission monitoring.” Eng. Fract. Mech. 74 (1): 273–289. https://doi.org/10.1016/j.engfracmech.2006.01.036.
Chan, T. H., S. Law, T. Yung, and X. Yuan. 1999. “An interpretive method for moving force identification.” J. Sound Vib. 219 (3): 503–524. https://doi.org/10.1006/jsvi.1998.1904.
Chan, T. H., L. Yu, S. Law, and T. Yung. 2001. “Moving force identification studies. I: Theory.” J. Sound Vib. 247 (1): 59–76. https://doi.org/10.1006/jsvi.2001.3630.
Clark, C. W., M. W. Brown, and P. Corkeron. 2010. “Visual and acoustic surveys for North Atlantic right whales, Eubalaena glacialis, in Cape Cod Bay, Massachusetts, 2001–2005: Management implications.” Mar. Mammal Sci. 26 (4): 837–854. https://doi.org/10.1111/j.1748-7692.2010.00376.
Fathi, A., L. F. Kallivokas, and B. Poursartip. 2015. “Full-waveform inversion in three-dimensional PML-truncated elastic media.” Comput. Methods Appl. Mech. Eng. 296: 39–72. https://doi.org/10.1016/j.cma.2015.07.008.
Fathi, A., B. Poursartip, K. H. Stokoe II, and L. F. Kallivokas. 2016. “Three-dimensional P- and S-wave velocity profiling of geotechnical sites using full-waveform inversion driven by field data.” Soil Dyn. Earthquake Eng. 87: 63–81. https://doi.org/10.1016/j.soildyn.2016.04.010.
Feng, D., H. Sun, and M. Q. Feng. 2015. “Simultaneous identification of bridge structural parameters and vehicle loads.” Comput. Struct. 157: 76–88. https://doi.org/10.1016/j.compstruc.2015.05.017.
Ghahari, S. F., F. Abazarsa, M. A. Ghannad, M. Celebi, and E. Taciroglu. 2014. “Blind modal identification of structures from spatially sparse seismic response signals.” Struct. Control Health Monitor. 21 (5): 649–674. https://doi.org/10.1002/stc.1593.
Grabowski, K., M. Gawronski, I. Baran, W. Spychalski, W. J. Staszewski, T. Uhl, T. Kundu, and P. Packo. 2016. “Time-distance domain transformation for acoustic emission source localization in thin metallic plates.” Ultrasonics 68: 142–149. https://doi.org/10.1016/j.ultras.2016.02.015.
Groetsch, C. W. 1984. Vol. 105 of The theory of Tikhonov regularization for Fredholm equations of the first kind. Boston: Pitman Advanced Publishing Program.
Hasanov, A., and O. Baysal. 2014. “Identification of an unknown spatial load distribution in a vibrating cantilevered beam from final overdetermination.” J. Inverse Ill-Posed Prob. 23 (1): 85–102. https://doi.org/10.1515/jiip-2014-0010.
Hernandez, E. M., and D. Bernal. 2008. “State estimation in structural systems with model uncertainties.” J. Eng. Mech. 134 (3): 252–257. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:3(252).
Hernandez, E. M., D. Bernal, and L. Caracoglia. 2013. “On-line monitoring of wind-induced stresses and fatigue damage in instrumented structures: Monitoring wind-induced fatigue damage.” Struct. Control Health Monitor. 20 (10): 1291–1302. https://doi.org/10.1002/stc.1536.
Hong, T.-K. 2011. “Seismic investigation of the 26 March 2010 sinking of the South Korean naval vessel Cheonanham.” Bull. Seismol. Soc. Am. 101 (4): 1554–1562. https://doi.org/10.1785/0120100186.
Jeong, C., and E. Esmaeilzadeh Seylabi. 2018. “Seismic input motion identification in a heterogeneous halfspace.” J. Eng. Mech. 144 (8): 04018070. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001495.
Jeong, C., L. Kallivokas, S. Kucukcoban, W. Deng, and A. Fathi. 2015. “Maximization of wave motion within a hydrocarbon reservoir for wave-based enhanced oil recovery.” J. Pet. Sci. Eng. 129: 205–220. https://doi.org/10.1016/j.petrol.2015.03.009.
Jeong, C., and L. F. Kallivokas. 2017. “An inverse-source problem for maximization of pore-fluid oscillation within poroelastic formations.” Inverse Prob. Sci. Eng. 25 (6): 832–863. https://doi.org/10.1080/17415977.2016.1201663.
Jeong, C., L. F. Kallivokas, C. Huh, and L. W. Lake. 2010. “Optimization of sources for focusing wave energy in targeted formations.” J. Geophys. Eng. 7 (3): 242–256. https://doi.org/10.1088/1742-2132/7/3/003.
Jeong, C., A. C. S. Peixoto, A. Aquino, S. Lloyd, and S. Arhin. 2017. “Genetic algorithm-based acoustic-source inversion approach to detect multiple moving wave sources of an arbitrary number.” J. Comput. Civ. Eng. 31 (5): 04017020. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000664.
Jiang, R., F. Au, and Y. Cheung. 2003. “Identification of masses moving on multi-span beams based on a genetic algorithm.” Comput. Struct. 81 (22): 2137–2148. https://doi.org/10.1016/S0045-7949(03)00298-0.
Kallivokas, L., A. Fathi, S. Kucukcoban, K. Stokoe, J. Bielak, and O. Ghattas. 2013. “Site characterization using full waveform inversion.” Soil Dyn. Earthquake Eng. 47: 62–82. https://doi.org/10.1016/j.soildyn.2012.12.012.
Karve, P. M., and L. F. Kallivokas. 2015. “Wave energy focusing to subsurface poroelastic formations to promote oil mobilization.” Geophys. J. Int. 202 (1): 119–141. https://doi.org/10.1093/gji/ggv133.
Karve, P. M., L. F. Kallivokas, and L. Manuel. 2016. “A framework for assessing the uncertainty in wave energy delivery to targeted subsurface formations.” J. Appl. Geophys. 125: 26–36. https://doi.org/10.1016/j.jappgeo.2015.12.001.
Karve, P. M., S. Kucukcoban, and L. F. Kallivokas. 2015. “On an inverse source problem for enhanced oil recovery by wave motion maximization in reservoirs.” Comput. Geosci. 19 (1): 233–256. https://doi.org/10.1007/s10596-014-9462-7.
Kim, S. G., and Y. Gitterman. 2013. “Underwater explosion (UWE) analysis of the ROKS Cheonan incident.” Pure Appl. Geophys. 170 (4): 547–560. https://doi.org/10.1007/s00024-012-0554-9.
Kundu, T. 2014. “Acoustic source localization.” Ultrasonics 54 (1): 25–38. https://doi.org/10.1016/j.ultras.2013.06.009.
Kundu, T., S. Das, and K. V. Jata. 2007. “Point of impact prediction in isotropic and anisotropic plates from the acoustic emission data.” J. Acoust. Soc. Am. 122 (4): 2057–2066. https://doi.org/10.1121/1.2775322.
Kundu, T., H. Nakatani, and N. Takeda. 2012. “Acoustic source localization in anisotropic plates.” Ultrasonics 52 (6): 740–746. https://doi.org/10.1016/j.ultras.2012.01.017.
Larmat, C., J. Tromp, Q. Liu, and J.-P. Montagner. 2008. “Time reversal location of glacial earthquakes.” J. Geophys. Res. Solid Earth 113 (B9): B09314. https://doi.org/10.1029/2008JB005607.
Law, S., T. H. Chan, and Q. Zeng. 1997. “Moving force identification: A time domain method.” J. Sound Vib. 201 (1): 1–22. https://doi.org/10.1006/jsvi.1996.0774.
Lesnic, D., S. O. Hussein, and B. T. Johansson. 2016. “Inverse space-dependent force problems for the wave equation.” J. Comput. Appl. Math. 306: 10–39. https://doi.org/10.1016/j.cam.2016.03.034.
Levenberg, E. 2014. “Estimating vehicle speed with embedded inertial sensors.” Transp. Res. Part C Emerg. Technol. 46: 300–308. https://doi.org/10.1016/j.trc.2014.06.007.
Pakravan, A., and J. W. Kang. 2014. “A Gauss-Newton full-waveform inversion for material profile reconstruction in 1D PML-truncated solid media.” KSCE J. Civ. Eng. 18 (6): 1792–1804. https://doi.org/10.1007/s12205-014-0087-0.
Pakravan, A., J. W. Kang, and C. M. Newtson. 2016. “A Gauss-Newton full-waveform inversion for material profile reconstruction in viscoelastic semi-infinite solid media.” Inverse Prob. Sci. Eng. 24 (3): 393–421. https://doi.org/10.1080/17415977.2015.1046861.
Pan, S., M. Mirshekari, P. Zhang, and H. Y. Noh. 2016. “Occupant traffic estimation through structural vibration sensing.” In Proc., SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, 980306. Bellingham, WA: International Society for Optics and Photonics.
Park, H. W., S. B. Kim, and H. Sohn. 2009. “Understanding a time reversal process in lamb wave propagation.” Wave Motion 46 (7): 451–467. https://doi.org/10.1016/j.wavemoti.2009.04.004.
Park, H. W., H. Sohn, K. H. Law, and C. R. Farrar. 2007. “Time reversal active sensing for health monitoring of a composite plate.” J. Sound Vib. 302 (1): 50–66. https://doi.org/10.1016/j.jsv.2006.10.044.
Sabelli, A., and W. Aquino. 2013. “A source sensitivity approach for source localization in steady-state linear systems.” Inverse Prob. 29 (9): 095005. https://doi.org/10.1088/0266-5611/29/9/095005.
Stafsudd, J. Z., S. Asgari, R. Hudson, K. Yao, and E. Taciroglu. 2008. “Localization of short-range acoustic and seismic wideband sources: Algorithms and experiments.” J. Sound Vib. 312 (1–2): 74–93. https://doi.org/10.1016/j.jsv.2007.10.040.
Tadi, M., H. Rabitz, K. Y. Sik, A. Askar, J. H. Prevost, and J. B. McManus. 1996. “Interior energy focusing within an elasto-plastic material.” Int. J. Solids Struct. 33 (13): 1891–1901. https://doi.org/10.1016/0020-7683(95)00137-9.
Tromp, J., D. Komattisch, and Q. Liu. 2008. “Spectral-element and adjoint methods in seismology.” Comm. Comput. Phys. 3 (1): 1–32.
Unnthorsson, R., T. P. Runarsson, and M. T. Jonsson. 2008. “Acoustic emission based fatigue failure criterion for CFRP.” Int. J. Fatigue 30 (1): 11–20. https://doi.org/10.1016/j.ijfatigue.2007.02.024.
Xu, B., and V. Giurgiutiu. 2007. “Single mode tuning effects on lamb wave time reversal with piezoelectric wafer active sensors for structural health monitoring.” J. Nondestr. Eval. 26 (2–4): 123–134. https://doi.org/10.1007/s10921-007-0027-8.
Yan, G., H. Sun, and O. Büyüköztürk. 2017. “Impact load identification for composite structures using Bayesian regularization and unscented Kalman filter.” Struct. Control Health Monitor. 24 (5): e1910. https://doi.org/10.1002/stc.1910.
Zhang, Q., L. Jankowski, and Z. Duan. 2010. “Simultaneous identification of moving masses and structural damage.” Struct. Multidiscip. Optim. 42 (6): 907–922. https://doi.org/10.1007/s00158-010-0528-4.
Zigel, Y., D. Litvak, and I. Gannot. 2009. “A method for automatic fall detection of elderly people using floor vibrations and sound—Proof of concept on human mimicking doll falls.” IEEE Trans. Biomed. Eng. 56 (12): 2858–2867. https://doi.org/10.1109/TBME.2009.2030171.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 144Issue 9September 2018

History

Received: Dec 3, 2017
Accepted: Apr 4, 2018
Published online: Jul 6, 2018
Published in print: Sep 1, 2018
Discussion open until: Dec 6, 2018

Permissions

Request permissions for this article.

Authors

Affiliations

S. F. Lloyd
Postdoctoral Researcher, Dept. of Civil Engineering, Catholic Univ. of America, Washington, DC 20064.
Assistant Professor, Dept. of Civil Engineering, Catholic Univ. of America, Washington, DC 20064 (corresponding author). ORCID: https://orcid.org/0000-0002-0488-8559. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share