Abstract

A mobile treatment system equipped with a custom-built sonolysis reactor was deployed at a site in California to treat groundwater impacted with per- and polyfluoroalkyl substances (PFAS). Extracted groundwater was treated in a 700-kHz sonolysis reactor for batch treatment under different power densities (122, 203, and 305  W/L) and operating temperatures (15°C and 25°C). Sonolytic treatment resulted in 93%–100% removal of the 15 PFAS identified in the groundwater, and PFAS degradation rates increased proportionally with increasing power density and temperature at operating conditions of 25°C. For all experimental conditions evaluated, greater removal was observed for perfluorinated carboxylic acids (PFCAs) [e.g., 95.1% to 100% for perfluorohexanoic acid (PFHxA)] than perfluorinated sulfonic acids (PFSAs) [68.3% to 95.2% for perfluorohexane sulfonate (PFHxS)] for similar carbon chain lengths. Similarly, greater removal was observed for longer-chain PFAS [e.g., 95.4% to 99.5% for perfluorooctanoic acid (PFOA)] compared with short-chain PFAS [56.9% to 90.4% for perfluorobutanoic acid (PFBA)]. Substantial removal of total oxidizable precursors (TOP) and specific precursors [65.5% to 99.1% for 4:2 fluorotelomer sulfonate (FTS), 6:2 FTS, 8:2 FTS, and perfluorooctane sulfonamide (FOSA)] was also observed under all conditions tested. Additionally, formation of nitrate was observed, with concentrations below maximum contaminant levels (MCLs). Overall, the results demonstrate that sonolysis treatment of PFAS-contaminated groundwater can effectively degrade PFAS without the formation of short-chain PFAS and the oxidation byproducts chlorate and perchlorate.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This project was supported by US Navy Engineering and Expeditionary Warfare Center (NAVFAC EXWC). We thank Arun Gavaskar and Ramona Iery at NAVFAC EXWC for technical review and support, and Randy Bindas, Kate Bindas, and Chris Joyal at National Environmental Systems (NES) for the construction and integration of the mobile trailer used for this field demonstration. Additionally, we thank the base personnel for supporting the demonstration.

References

Adamson, D. T., P. R. Kulkarni, A. Nickerson, C. P. Higgins, J. Field, T. Schwichtenberg, C. Newell, and J. J. Kornuc. 2022. “Characterization of relevant site-specific PFAS fate and transport processes at multiple AFFF sites.” Environ. Adv. 7 (Apr): 100167. https://doi.org/10.1016/j.envadv.2022.100167.
Adewuyi, Y. G. 2001. “Sonochemistry: Environmental science and engineering applications.” Ind. Eng. Chem. Res. 40 (22): 4681–4715. https://doi.org/10.1021/ie010096l.
Adewuyi, Y. G. 2005a. “Sonochemistry in environmental remediation. 1. combinative and hybrid sonophotochemical oxidation processes for the treatment of pollutants in water.” Environ. Sci. Technol. 39 (10): 3409–3420. https://doi.org/10.1021/es049138y.
Adewuyi, Y. G. 2005b. “Sonochemistry in environmental remediation. 2. Heterogeneous sonophotocatalytic oxidation processes for the treatment of pollutants in water.” Environ. Sci. Technol. 39 (22): 8557–8570. https://doi.org/10.1021/es0509127.
Anderson, R. H., G. C. Long, R. C. Porter, and J. K. Anderson. 2016. “Occurrence of select perfluoroalkyl substances at US Air Force aqueous film-forming foam release sites other than fire-training areas: Field validation of critical fate and transport properties.” Chemosphere 150 (May): 678–685. https://doi.org/10.1016/j.chemosphere.2016.01.014.
Bruton, T. A., and D. L. Sedlak. 2018. “Treatment of perfluoroalkyl acids by heat-activated persulfate under conditions representative of in situ chemical oxidation.” Chemosphere 206 (Sep): 457–464. https://doi.org/10.1016/j.chemosphere.2018.04.128.
Campbell, T., and R. M. Hoffmann. 2015. “Sonochemical degradation of perfluorinated surfactants: Power and multiple frequency effects.” Sep. Purif. Technol. 156 (Dec): 1019–1027. https://doi.org/10.1016/j.seppur.2015.09.053.
Campbell, T. Y., C. D. Vecitis, B. T. Mader, and R. M. Hoffmann. 2009. “Perfluorinated surfactant chain-length effects on sonochemical kinetics.” J. Phys. Chem. A 113 (36): 9834–9842. https://doi.org/10.1021/jp903003w.
Cao, H., W. Zhang, C. Wang, and Y. Liang. 2020. “Sonochemical degradation of poly-and perfluoroalkyl substances: A review.” Ultrason. Sonochem. 69 (Dec): 105245. https://doi.org/10.1016/j.ultsonch.2020.105245.
Cheng, J., C. D. Vecitis, H. Park, B. T. Mader, and M. R. Hoffmann. 2008. “Sonochemical degradation of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in landfill groundwater: Environmental matrix effects.” Environ. Sci. Technol. 42 (21): 8057–8063. https://doi.org/10.1021/es8013858.
Cheng, J., C. D. Vecitis, H. Park, B. T. Mader, and M. R. Hoffmann. 2010. “Sonochemical degradation of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in groundwater: Kinetic effects of matrix inorganics.” Environ. Sci. Technol. 44 (1): 445–450. https://doi.org/10.1021/es902651g.
Fernandez, N. A., L. Rodriguez-Freire, M. Keswani, and R. Sierra-Alvarez. 2016. “Effect of chemical structure on the sonochemical degradation of perfluoroalkyl and polyfluoroalkyl substances (PFASs).” Environ. Sci. Water Res. Technol. 2 (6): 975–983. https://doi.org/10.1039/C6EW00150E.
Gogate, P. R., A. M. Wilhelm, and A. B. Pandit. 2003. “Some aspects of the design of sonochemical reactors.” Ultrason. Sonochem. 10 (6): 325–330. https://doi.org/10.1016/S1350-4177(03)00103-2.
Gole, V. L., R. Sierra-Alvarez, H. Peng, J. P. Giesy, P. Deymier, and M. Keswani. 2018. “Sono-chemical treatment of per-and poly-fluoroalkyl compounds in aqueous film-forming foams by use of a large-scale multi-transducer dual-frequency based acoustic reactor.” Ultrason. Sonochem. 45 (Jul): 213–222. https://doi.org/10.1016/j.ultsonch.2018.02.014.
Hao, F., W. Guo, A. Wang, Y. Leng, and H. Li. 2014. “Intensification of sonochemical degradation of ammonium perfluorooctanoate by persulfate oxidant.” Ultrason. Sonochem. 21 (2): 554–558. https://doi.org/10.1016/j.ultsonch.2013.09.016.
Hapeshi, E., A. Achilleos, A. Papaioannou, L. Valanidou, N. P. Xekoukoulotakis, D. Mantzavinos, and D. Fatta-Kassinos. 2010. “Sonochemical degradation of ofloxacin in aqueous solutions.” Water Sci. Technol. 61 (12): 3141–3146. https://doi.org/10.2166/wst.2010.921.
Hori, H., Y. Nagaoka, M. Murayama, and S. Kutsuna. 2008. “Efficient decomposition of perfluorocarboxylic acids and alternative fluorochemical surfactants in hot water.” Environ. Sci. Technol. 42 (19): 7438–7443. https://doi.org/10.1021/es800832p.
Houtz, E. F., and D. L. Sedlak. 2012. “Oxidative conversion as a means of detecting precursors to perfluoroalkyl acids in urban runoff.” Environ. Sci. Technol. 46 (17): 9342–9349. https://doi.org/10.1021/es302274g.
Hu, Y. B., S. L. Lo, Y. F. Li, Y. C. Lee, M. J. Chen, and J. C. Lin. 2018. “Autocatalytic degradation of perfluorooctanoic acid in a permanganate-ultrasonic system.” Water Res. 140 (Sep): 148–157. https://doi.org/10.1016/j.watres.2018.04.044.
Kalra, S. S., B. Crammer, G. Dooley, A. J. Hanson, S. Maraviov, S. K. Mohanty, J. Blotevogel, and S. Mahendra. 2021. “Sonolytic destruction of per- and polyfluoroalkyl substances in groundwater, aqueous Film-Forming Foams, and investigation derived waste.” Chem. Eng. J. 425 (Dec): 131778. https://doi.org/10.1016/j.cej.2021.131778.
Kim, T.-H., S.-H. Lee, Y. H. Kim, K. Doudrick, S. Yu, and S. D. Kim. 2019. “Decomposition of perfluorooctane sulfonate (PFOS) using a hybrid process with electron beam and chemical oxidants.” Chem. Eng. J. 361 (Apr): 1363–1370. https://doi.org/10.1016/j.cej.2018.10.195.
Kruus, P. 2000. “Sonochemical formation of nitrate and nitrite in water.” Ultrason. Sonochem. 7 (3): 109–113. https://doi.org/10.1016/S1350-4177(99)00043-7.
Lee, Y., S. Lo, J. Kuo, and C. Hsieh. 2012. “Decomposition of perfluorooctanoic acid by microwaveactivated persulfate: Effects of temperature, pH, and chloride ions.” Front. Environ. Sci. Eng. China 6 (1): 17–25. https://doi.org/10.1007/s11783-011-0371-x.
Lee, Y. C., M. J. Chen, C. P. Huang, J. Kuo, and S. L. Lo. 2016. “Efficient sonochemical degradation of perfluorooctanoic acid using periodate.” Ultrason. Sonochem. 31 (Jul): 499–505. https://doi.org/10.1016/j.ultsonch.2016.01.030.
Lin, J. C., C. Y. Hu, and S. L. Lo. 2016. “Effect of surfactants on the degradation of perfluorooctanoic acid (PFOA) by ultrasonic (US) treatment.” Ultrason. Sonochem. 28 (Jan): 130–135. https://doi.org/10.1016/j.ultsonch.2015.07.007.
Lin, J. C., S. L. Lo, C. Y. Hu, Y. C. Lee, and J. Kuo. 2015. “Enhanced sonochemical degradation of perfluorooctanoic acid by sulfate ions.” Ultrason. Sonochem. 22 (Jan): 542–547. https://doi.org/10.1016/j.ultsonch.2014.06.006.
Liu, C. J., et al. 2021. “Pilot-scale field demonstration of a hybrid nanofiltration and UV-sulfite treatment train for groundwater contaminated by per and polyfluoroalkyl substances (PFAS).” Water Res. 205 (Oct): 117677. https://doi.org/10.1016/j.watres.2021.117677.
Liu, C. S., C. P. Higgins, F. Wang, and K. Shih. 2012. “Effect of temperature on oxidative transformation of perfluorooctanoic acid (PFOA) by persulfate activation in water.” Sep. Purif. Technol. 91 (May): 46–51. https://doi.org/10.1016/j.seppur.2011.09.047.
Martin, D., G. Munoz, S. Mejia-Avendaño, S. V. Duy, Y. Yao, K. Volchek, C. E. Brown, J. Liu, and S. Sauvé. 2019. “Zwitterionic, cationic, and anionic perfluoroalkyl and polyfluoroalkyl substances integrated into total oxidizable precursor assay of contaminated groundwater.” Talanta 195 (Apr): 533–542. https://doi.org/10.1016/j.talanta.2018.11.093.
McDonough, J. T., J. Kirby, C. Bellona, J. A. Quinnan, N. Welty, J. Follin, and K. Liberty. 2022. “Validation of supercritical water oxidation to destroy perfluoroalkyl acids.” Rem. J. 32 (1–2): 75–90. https://doi.org/10.1002/rem.21711.
Moriwaki, H., Y. Takagi, M. Tanaka, K. Tsuruho, K. Okitsu, and Y. Maeda. 2005. “Sonochemical decomposition of perfluorooctane sulfonate and perfluorooctanoic acid.” Environ. Sci. Technol. 39 (9): 3388–3392. https://doi.org/10.1021/es040342v.
Nau-Hix, C., N. Multari, R. K. Singh, S. Richardson, P. Kulkarni, R. H. Anderson, T. M. Holsen, and S. Mededovic Thagard. 2021. “Field demonstration of a pilot-scale plasma reactor for the rapid removal of poly- and perfluoroalkyl substances in groundwater.” ACS EST Water 1 (3): 680–687. https://doi.org/10.1021/acsestwater.0c00170.
Nzeribe, B. N., M. Crimi, S. Mededovic Thagard, and T. M. Holsen. 2019. “Physico-chemical processes for the treatment of per-and polyfluoroalkyl substances (PFAS): A review.” Crit. Rev. Environ. Sci. Technol. 49 (10): 866–915. https://doi.org/10.1080/10643389.2018.1542916.
Okitsu, K., B. Nanzai, and K. Thangavadivel. 2015. “Sonochemical degradation of aromatic compounds, surfactants, and dyes in aqueous solutions.” In Handbook of ultrasonics and sonochemistry, 1–28. Singapore: Springer.
Panda, D., V. Sethu, and S. Manickam. 2019. “Kinetics and mechanism of low-frequency ultrasound driven elimination of trace level aqueous perfluorooctanesulfonic acid and perfluorooctanoic acid.” Chem. Eng. Process. 142 (Aug): 107542. https://doi.org/10.1016/j.cep.2019.107542.
Park, S., L. S. Lee, V. F. Medina, A. Zull, and S. Waisner. 2016. “Heat-activated persulfate oxidation of PFOA, 6: 2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation.” Chemosphere 145 (Feb): 376–383. https://doi.org/10.1016/j.chemosphere.2015.11.097.
Prevedouros, K., I. T. Cousins, R. C. Buck, and S. H. Korzeniowski. 2006. “Sources, fate and transport of perfluorocarboxylates.” Environ. Sci. Technol. 40 (1): 32–44. https://doi.org/10.1021/es0512475.
Rayaroth, M. P., U. K. Aravind, and C. T. Aravindakumar. 2018. “Role of in-situ nitrite ion formation on the sonochemical transformation of para-aminosalicylic acid.” Ultrason. Sonochem. 40 (Jan): 213–220. https://doi.org/10.1016/j.ultsonch.2017.06.031.
Rodriguez-Freire, L., R. Balachandran, R. Sierra-Alvarez, and M. Keswani. 2015. “Effect of sound frequency and initial concentration on the sonochemical degradation of perfluorooctane sulfonate (PFOS).” J. Hazard. Mater. 300 (Dec): 662–669. https://doi.org/10.1016/j.jhazmat.2015.07.077.
Schaefer, C. E., S. Choyke, P. L. Ferguson, C. Andaya, A. Burant, A. Maizel, T. J. Strathmann, and C. P. Higgins. 2018. “Electrochemical transformations of perfluoroalkyl acid (PFAA) precursors and PFAAs in groundwater impacted with aqueous film forming foams.” Environ. Sci. Technol. 52 (18): 10689–10697. https://doi.org/10.1021/acs.est.8b02726.
Shende, T., G. Andaluri, and R. P. Suri. 2019. “Kinetic model for sonolytic degradation of non-volatile surfactants: Perfluoroalkyl substances.” Ultrason. Sonochem. 51 (Mar): 359–368. https://doi.org/10.1016/j.ultsonch.2018.08.028.
Singh, R. K., N. Multari, C. Nau-Hix, R. H. Anderson, S. D. Richardson, T. M. Holsen, and S. Mededovic Thagard. 2019. “Rapid removal of poly- and perfluorinated compounds from investigation-derived waste (IDW) in a pilot-scale plasma reactor.” Environ. Sci. Technol. 53 (19): 11375–11382. https://doi.org/10.1021/acs.est.9b02964.
Sostaric, J. Z., and P. Riesz. 2001. “Sonochemistry of surfactants in aqueous solutions: An EPR spin-trapping study.” J. Am. Chem. Soc. 123 (44): 11010–11019. https://doi.org/10.1021/ja010857b.
Sunderland, E. M., X. C. Hu, C. Dassuncao, A. K. Tokranov, C. C. Wagner, and J. G. Allen. 2019. “A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects.” J. Exposure Sci. Environ. Epidemiol. 29 (2): 131–147. https://doi.org/10.1038/s41370-018-0094-1.
Tenorio, R., J. Liu, X. Xiao, A. Maizel, C. P. Higgins, C. E. Schaefer, and T. J. Strathmann. 2020. “Destruction of per- and polyfluoroalkyl substances (PFAS) in aqueous film-forming foam (AFFF) with UV-sulfite photoreductive treatment.” Environ. Sci. Technol. 54 (11): 6957–6967. https://doi.org/10.1021/acs.est.0c00961.
Vecitis, C. D., H. Park, J. Cheng, B. T. Mader, and M. R. Hoffmann. 2008. “Kinetics and mechanism of the sonolytic conversion of the aqueous perfluorinated surfactants, perfluorooctanoate (PFOA), and perfluorooctane sulfonate (PFOS) into inorganic products.” J. Phys. Chem. A 112 (18): 4261–4270. https://doi.org/10.1021/jp801081y.
Vecitis, C. D., H. Park, J. Cheng, B. T. Mader, and M. R. Hoffmann. 2009. “Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA).” Front. Environ. Sci. Eng. China 3 (2): 129–151. https://doi.org/10.1007/s11783-009-0022-7.
Wakeford, C. A., R. Blackburn, and P. D. Lickiss. 1999. “Effect of ionic strength on the acoustic generation of nitrite, nitrate and hydrogen peroxide.” Ultrason. Sonochem. 6 (3): 141–148. https://doi.org/10.1016/S1350-4177(98)00039-X.
Xiao, R., Z. Wei, D. Chen, and L. K. Weavers. 2014. “Kinetics and mechanism of sonochemical degradation of pharmaceuticals in municipal wastewater.” Environ. Sci. Technol. 48 (16): 9675–9683. https://doi.org/10.1021/es5016197.
Xiao, X., B. A. Ulrich, B. Chen, and C. P. Higgins. 2017. “Sorption of poly- and perfluoroalkyl substances (PFASs) relevant to aqueous film-forming foam (AFFF)-impacted groundwater by biochars and activated carbon.” Environ. Sci. Technol. 51 (11): 6342–6351. https://doi.org/10.1021/acs.est.7b00970.
Yang, L., J. F. Rathman, and L. K. Weavers. 2005. “Degradation of alkylbenzene sulfonate surfactants by pulsed ultrasound.” J. Phys. Chem. B 109 (33): 16203–16209. https://doi.org/10.1021/jp0523221.
Yang, S., S. Fernando, T. M. Holsen, and Y. Yang. 2019. “Inhibition of perchlorate formation during the electrochemical oxidation of perfluoroalkyl acid in groundwater.” Environ. Sci. Technol. Lett. 6 (12): 775–780. https://doi.org/10.1021/acs.estlett.9b00653.
Yang, S. W., J. Sun, Y. Y. Hu, J. H. Cheng, and X. Y. Liang. 2013. “Effect of vacuum ultraviolet on ultrasonic defluorination of aqueous perfluorooctanesulfonate.” Chem. Eng. J. 234 (Dec): 106–114. https://doi.org/10.1016/j.cej.2013.08.073.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 148Issue 11November 2022

History

Received: Feb 25, 2022
Accepted: Jun 14, 2022
Published online: Sep 8, 2022
Published in print: Nov 1, 2022
Discussion open until: Feb 8, 2023

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Poonam R. Kulkarni [email protected]
Senior Engineer, GSI Environmental Inc., 2211 Norfolk, Suite 1000, Houston, TX 77098 (corresponding author). Email: [email protected]
Stephen D. Richardson [email protected]
Principal Engineer and Vice President, GSI Environmental Inc., 9600 Great Hills Trail, Suite 350E, Austin, TX 78759. Email: [email protected]
Blossom N. Nzeribe
Engineer, GSI Environmental Inc., 9600 Great Hills Trail, Suite 350E, Austin, TX 78759.
David T. Adamson [email protected]
Principal Engineer, GSI Environmental Inc., 2211 Norfolk, Suite 1000, Houston, TX 77098. Email: [email protected]
Ph.D. Candidate, Dept. of Civil and Environmental Engineering, Univ. of California, 5732J Boelter Hall, Los Angeles, CA 90095. ORCID: https://orcid.org/0000-0003-3227-6848. Email: [email protected]
Professor, Dept. of Civil and Environmental Engineering, Univ. of California, 5732J Boelter Hall, Los Angeles, CA 90095. ORCID: https://orcid.org/0000-0003-3298-9602. Email: [email protected]
Senior Research Scientist, Dept. of Civil and Environmental Engineering, Colorado State Univ., 1320 Campus Delivery, Fort Collins, CO 80523-1320. ORCID: https://orcid.org/0000-0002-2740-836X. Email: [email protected]
Research Scientist, Dept. of Civil and Environmental Engineering, Colorado State Univ., 1320 Campus Delivery, Fort Collins, CO 80523-1320. ORCID: https://orcid.org/0000-0003-2689-9870. Email: [email protected]
Greg Dooley [email protected]
Assistant Professor, Dept. of Environmental and Radiological Health Sciences, Colorado State Univ., 1680 Campus Delivery, Fort Collins, CO 80523. Email: [email protected]
President, PCT Systems Inc., 2182 Paragon Dr., San Jose, CA 95131. ORCID: https://orcid.org/0000-0003-2484-1667. Email: [email protected]
Jovan Popovic [email protected]
Environmental Engineer, US Navy Engineering and Expeditionary Warfare Center (EXWC), 1100 23rd Ave., Port Hueneme, CA 93043. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Mechanism Analysis of PFHxS Purification in Water Using Nanofiltration under the Coexistence of Sodium Alginate and Ca2+ Based on DFT, Water, 10.3390/w15040792, 15, 4, (792), (2023).
  • Process to separate per‐ and polyfluoroalkyl substances from water using colloidal gas aphrons, Remediation Journal, 10.1002/rem.21716, 32, 3, (167-176), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share