Abstract

The knowledge of adsorption characteristics of bentonite (B) is mandatory for heavy metals removal from the wastewater and contaminant retention in landfill liner. Adsorption characterization of geomaterials requires the use of a buffer for pH adjustment. Previous studies have not investigated the impact of using a buffer on the adsorption characteristics of swelling soils such as B. This study quantified the influence of sodium acetate (Na-Ac) buffer on the adsorption capacity of B and percentage removal of lead (Pb2+) using a batch adsorption study (BAS). The solution was adjusted using either nitric acid or Na-Ac buffer to maintain pH=5. The sediment volume of bentonite suspension in water at pH 5 adjusted with Na-Ac buffer was less than that using nitric acid. The lesser sediment volume was due mainly to the agglomeration of bentonite particles in the presence of Na-Ac buffer. The experimental findings corroborate that the use of Na-Ac buffer results in a notable reduction of adsorption capacity and percentage removal of Pb2+ by B. The highest percentage removal of Pb2+ ions was observed at a liquid-to-solid ratio (L/S) of 20 when pH was adjusted with nitric acid. The lowest percentage removal was noted at L/S=100 when pH was maintained using Na-Ac buffer. The influence of Na-Ac buffer also was evaluated by conducting a BAS for Pb2+ removal under a competitive environment of Na+ using sodium chloride (NaCl) and Na-Ac buffer. The interaction of Pb2+ with B in two different environments was confirmed by mineralogical, morphological, and spectral analysis postadsorption. According to this study, nitric acid can be a better alternative to Na-Ac buffer for the adsorption study of B in a controlled pH environment. If a buffer is used for the adjustment of pH in a BAS, its effect on the adsorption capacity and percentage removal should be taken into account when characterizing B for its practical application in water decontamination, waste containment system, and chemical reactive barrier projects.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and/or code that support the findings of this study are available from the corresponding author.

Acknowledgments

The authors gratefully acknowledge the Department of Science and Technology, India, for providing the funding for this research work via Project No. SR/S3/MERC/0040/2011. The authors also thank the Central Instrument Facility (CIF), Centre for the Environment, Environmental Engineering Laboratory, Department of Civil Engineering, at Indian Institute of Technology Guwahati (IIT Guwahati) for providing the necessary support required for this research work.

References

Alinnor, I. J. 2007. “Adsorption of heavy metal ions from aqueous solution by fly ash.” Fuel 86 (5–6): 853–857. https://doi.org/10.1016/j.fuel.2006.08.019.
Al-Jlil, S. A., and F. D. Alsewailem. 2009. “Lead uptake by natural clay.” J. Appl. Sci. 9 (22): 4026–4031. https://doi.org/10.3923/jas.2009.4026.4031.
ASTM. 1994. Standard test method for specific gravity of soils. ASTM D854-92. West Conshohocken, PA: ASTM.
ASTM. 2007. Standard test method for particle-size analysis of soils. ASTM D422-63. West Conshohocken, PA: ASTM.
ASTM. 2008. Standard test method for 24-h batch-type measurement of contaminant sorption by soils and sediments. ASTM D4646. West Conshohocken, PA: ASTM.
ASTM. 2010. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM D4318. West Conshohocken, PA: ASTM.
Babel, S., and T. A. Kurniawan. 2003. “Low-cost adsorbents for heavy metals uptake from contaminated water: A review.” J. Hazard. Mater. 97 (1–3): 219–243. https://doi.org/10.1016/S0304-3894(02)00263-7.
Baik, M. H., and S. Y. Lee. 2010. “Colloidal stability of bentonite clay considering surface charge properties as a function of pH and ionic strength.” J. Ind. Eng. Chem. 16 (5): 837–841. https://doi.org/10.1016/j.jiec.2010.05.002.
Bao, N., X. Miao, X. Hu, Q. Zhang, X. Jie, and X. Zheng. 2017. “Novel synthesis of plasmonic Ag/AgCl@TiO2 continues fibers with enhanced broadband photocatalytic performance.” Catalysts 7 (12): 117. https://doi.org/10.3390/catal7040117.
Bekele, W., G. Faye, and N. Fernandez. 2014. “Removal of nitrate ion from aqueous solution by modified Ethiopian bentonite clay.” Int. J. Res. Pharmacy Chem. 4 (1): 192–201.
Bennour, H. A. M. 2013. “Adsorption of lead, nickel, and cobalt ions onto Libyan bentonite clay.” Int. J. Chem. Stud. 1 (3): 118.
BIS (Bureau of Indian Standards). 1992. “General standards for discharge of environmental pollutants (Reaffirmed 1993).” IS: 10500. London: BIS.
Bourliva, A., K. Michailidis, C. Sikalidis, A. Filippidis, and M. Betsiou. 2013. “Lead removal from aqueous solutions by natural Greek bentonites.” Clay Miner. 48 (5): 771–787. https://doi.org/10.1180/claymin.2013.048.5.09.
Burakov, A. E., E. V. Galunin, I. V. Burakova, A. E. Kucherova, S. Agarwal, A. G. Tkachev, and V. K. Gupta. 2018. “Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review.” Ecotoxicol. Environ. Saf. 148: 702–712. https://doi.org/10.1016/j.ecoenv.2017.11.034.
Byrne, R. H., and W. L. Miller. 1984. “Medium composition dependence of lead(II) complexation by chloride ion.” Am. J. Sci. 284 (1): 79–94. https://doi.org/10.2475/ajs.284.1.79.
Byrne, R. H., W. Yao, Y. Luo, and F. J. Millero. 2010. “Complexation of Pb(II) by chloride ions in aqueous solutions.” Aquat. Geochem. 16 (3): 325–335. https://doi.org/10.1007/s10498-010-9101-4.
Cerato, A. B., and A. J. Lutenegger. 2002. “Determination of surface area of fine-grained soils by the ethylene glycol monoethyl ether (EGME) method.” Geotech. Test. J. 25 (3): 17. https://doi.org/10.1520 /GTJ11087J.
Chai, W., Y. Huang, S. Su, G. Han, J. Liu, and Y. Cao. 2017. “Adsorption behavior of Zn(II) onto natural minerals in wastewater. A comparative study of bentonite and kaolinite.” Physicochem. Probl. Min. Process. 53 (1): 264–278. https://doi.org/10.5277/ppmp170122.
Chang, Y. S., P. I. Au, N. M. Mubarak, M. Khalid, P. Jagadish, R. Walvekar, and E. C. Abdullah. 2020. “Adsorption of Cu(II) and Ni(II) ions from wastewater onto bentonite and bentonite/GO composite.” Environ. Sci. Pollut. Res. 27 (26): 33270–33296. https://doi.org/10.1007/s11356-020-09423-7.
Chapman, H. D. 1965. “Cation-exchange capacity.” In Vol. 9 of Methods of soil analysis: Chemical and microbiological properties. Edited by C. A. Black, 891–901. Madison, WI: American Society of Agronomy.
Chegrouche, S., A. Mellah, and M. Barkat. 2009. “Removal of strontium from aqueous solutions by adsorption onto activated carbon: Kinetic and thermodynamic studies.” Desalination 235 (1–3): 306–318. https://doi.org/10.1016/j.desal.2008.01.018.
Cho, H., D. Oh, and K. Kim. 2005. “A study on removal characteristics of heavy metals from aqueous solution by fly ash.” J. Hazard. Mater. 127 (1–3): 187–195. https://doi.org/10.1016/j.jhazmat.2005.07.019.
Deka, A., and S. Sekharan. 2017. “Contaminant retention characteristics of fly ash–bentonite mixes.” Waste Manage. Res. 35 (1): 40–46. https://doi.org/10.1177/0734242X16670002.
Donat, R., A. Akdogan, E. Erdem, and H. Cetisli. 2005. “Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions.” J. Colloid Interface Sci. 286 (1): 43–52. https://doi.org/10.1016/j.jcis.2005.01.045.
Dutta, J., and A. K. Mishra. 2016. “Influence of the presence of heavy metals on the behaviour of bentonites.” Environ. Earth Sci. 75 (11): 993. https://doi.org/10.1007/s12665-016-5811-2.
EPA. 1990. Environmental pollution control alternatives. Cincinnati: EPA.
Fu, F., and Q. Wang. 2011. “Removal of heavy metal ions from wastewaters: A review.” J. Environ. Manage. 92 (3): 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011.
Gilbert, U. A., I. U. Emmanuel, A. A. Adebanjo, and G. A. Olalere. 2011. “Biosorptive removal of Pb2+ and Cd2+ onto novel biosorbent: Defatted Carica papaya seeds.” Biomass Bioenergy 35 (7): 2517–2525. https://doi.org/10.1016/j.biombioe.2011.02.024.
Goswami, L., R. V. Kumar, K. Pakshirajan, and G. Pugazhenthi. 2019. “A novel integrated biodegradation—microfiltration system for sustainable wastewater treatment and energy recovery.” J. Hazard. Mater. 365 (Mar): 707–715. https://doi.org/10.1016/j.jhazmat.2018.11.029.
Goswami, L., N. A. Manikandan, K. Pakshirajan, and G. Pugazhenthi. 2017. “Simultaneous heavy metal removal and anthracene biodegradation by the oleaginous bacteria Rhodococcus opacus.” 3 Biotech 7 (1): 37. https://doi.org/10.1007/s13205-016-0597-1.
Gupt, C. B., S. Bordoloi, S. Sekharan, and A. K. Sarmah. 2020a. “Adsorption characteristics of Barmer bentonite for hazardous waste containment application.” J. Hazard. Mater. 396 (Sep): 122594. https://doi.org/10.1016/j.jhazmat.2020.122594.
Gupt, C. B., S. Bordoloi, S. Sekharan, and A. K. Sarmah. 2020b. “A feasibility study of Indian fly ash-bentonite as an alternative adsorbent composite to sand-bentonite mixes in landfill liner.” Environ. Pollut. 265 (Part A): 114811. https://doi.org/10.1016/j.envpol.2020.114811.
Gupt, C. B., S. K. Yamsani, A. Prakash, C. R. Medhi, and S. Sreedeep. 2018. “Appropriate liquid-to-solid ratio for sorption studies of Bentonite.” J. Environ. Eng. 145 (2): 04018138. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001488.
Gupta, S. S., and K. G. Bhattacharyya. 2012. “Adsorption of heavy metals on kaolinite and montmorillonite: A review.” PCCP 14 (19): 6698–6723. https://doi.org/10.1039/c2cp40093f.
Hamadneh, I., R. Abu-Zurayk, B. Abu-Irmaileh, A. Bozeya, and A. Al-Dujaili. 2015. “Adsorption of Pb(II) on raw and organically modified Jordanian bentonite.” Clay Miner. 50 (4): 485–496. https://doi.org/10.1180/claymin.2015.050.4.05.
Herbert, H. J., M. Xie, J. Kasbohm, N. T. Lan, and T. M. T. Hoang. 2011. Fe-bentonite. Experiments and modelling of the interactions of bentonites with iron. Köln: Gesellschaft fuer Anlagen-und Reaktorsicherheit mbH.
Iacovita, C., R. Stiufiuc, T. Radu, A. Florea, G. Stiufiuc, A. Dutu, S. Mican, R. Tetean, and C. M. Lucaciu. 2015. “Polyethylene glycol-mediated synthesis of cubic iron oxide nanoparticles with high heating power.” Nanoscale Res. Lett. 10 (1): 1–16. https://doi.org/10.1186/s11671-015-1091-0.
Inel, O., F. Albayrak, and A. Askin. 1998. “Cu and Pb adsorption on some bentonitic clays.” Turk. J. Chem. 22 (3): 243–252.
Kakaei, S., E. S. Khameneh, F. Rezazadeh, and M. H. Hosseini. 2020. “Heavy metal removing by modified bentonite and study of catalytic activity.” J. Mol. Struct. 1199 (Jan): 126989. https://doi.org/10.1016/j.molstruc.2019.126989.
Kapoor, A., and T. Viraraghavan. 1998. “Use of immobilized bentonite in removal of heavy metals from wastewater.” J. Environ. Eng. 124 (10): 1020–1024. https://doi.org/10.1061/(ASCE)0733-9372(1998)124:10(1020).
Kara, M., H. Yuzer, E. Sabah, and M. S. Celik. 2003. “Adsorption of cobalt from aqueous solutions onto sepiolite.” Water Res. 37 (1): 224–232. https://doi.org/10.1016/S0043-1354(02)00265-8.
Kaya, A., and A. H. Ören. 2005. “Adsorption of zinc from aqueous solutions to bentonite.” J. Hazard. Mater. 125 (1–3): 183–189. https://doi.org/10.1016/j.jhazmat.2005.05.027.
Khan, S. A., Riaz-ur-Rehman, and M. A. Khan. 1995a. “Adsorption of chromium (III), chromium (VI) and silver (I) on bentonite.” Waste Manage. 15 (4): 271–282. https://doi.org/10.1016/0956-053X(95)00025-U.
Khan, S. A., Riaz-ur-Rehman, and M. A. Khan. 1995b. “Sorption of strontium on bentonite.” Waste Manage. 15 (8): 641–650. https://doi.org/10.1016/0956-053X(96)00049-9.
Kollannur, N. J., and D. N. Arnepalli. 2019. “Methodology for determining point of zero salt effect of clays in terms of surface charge properties.” J. Mater. Civ. Eng. 31 (12): 04019286. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002947.
Kong, Y., L. Wang, Y. Ge, H. Su, and Z. Li. 2019. “Lignin xanthate resin–bentonite clay composite as a highly effective and low-cost adsorbent for the removal of doxycycline hydrochloride antibiotic and mercury ions in water.” J. Hazard. Mater. 368 (Apr): 33–41. https://doi.org/10.1016/j.jhazmat.2019.01.026.
Lakherwal, D. 2014. “Adsorption of heavy metals: A review.” Int. J. Environ. Res. Dev. 4 (1): 2249–3131.
Li, L. Y., and F. Li. 2001. “Heavy metal sorption and hydraulic conductivity studies using three types of bentonite admixes.” J. Environ. Eng. 127 (5): 420–429. https://doi.org/10.1061/(ASCE)0733-9372(2001)127:5(420).
Li, Y. S., C. C. Liu, and C. S. Chiou. 2004. “Adsorption of Cr(III) from wastewater by wine processing waste sludge.” J. Colloid Interface Sci. 273 (1): 95–101. https://doi.org/10.1016/j.jcis.2003.12.051.
Liu, Z. R., and S. Q. Zhou. 2010. “Adsorption of copper and nickel on Na-bentonite.” Process Saf. Environ. Prot. 88 (1): 62–66. https://doi.org/10.1016/j.psep.2009.09.001.
Lo, I. M. C., R. K. M. Mak, and S. C. H. Lee. 1997. “Modified clays for waste containment and pollutant attenuation.” J. Environ. Eng. 123 (1): 25–32. https://doi.org/10.1061/(ASCE)0733-9372(1997)123:1(25).
Melichová, Z., and L. Hromada. 2013. “Adsorption of Pb2+ and Cu2+ ions from aqueous solutions on natural bentonite.” Pol. J. Environ. Stud. 22 (2): 457–464.
Mitchell, J. K., and K. Soga. 2005. Fundamentals of soil behavior. New York: Wiley.
Musso, T. B., M. E. Parolo, and G. Pettinari. 2019. “pH, ionic strength, and ion competition effect on Cu(II) and Ni(II) sorption by a Na-bentonite used as liner material.” Pol. J. Environ. Stud. 28 (4): 2299–2309. https://doi.org/10.15244/pjoes/84922.
Muurinen, A. 2011. Measurements on cation exchange capacity of bentonite in the long-term test of buffer material (LOT). Rep. Olkiluoto: Posiva Oy.
Naiya, T. K., A. K. Bhattacharya, S. Mandal, and S. K. Das. 2009. “The sorption of lead(II) ions on rice husk ash.” J. Hazard. Mater. 163 (2–3): 1254–1264. https://doi.org/10.1016/j.jhazmat.2008.07.119.
Nakano, A., L. Y. Li, M. Ohtsubo, A. K. Mishra, and T. Higashi. 2008. “Lead retention mechanisms and hydraulic conductivity studies of various bentonites for geoenvironment applications.” Environ. Technol. 29 (5): 505–514. https://doi.org/10.1080/09593330801984258.
Naseem, R., and S. S. Tahir. 2001. “Removal of Pb(II) from aqueous/acidic solutions by using bentonite as an adsorbent.” Water Res. 35 (16): 3982–3986. https://doi.org/10.1016/S0043-1354(01)00130-0.
Niriella, D., and R. P. Carnahan. 2006. “Comparison study of zeta potential values of bentonite in salt solutions.” J. Dispersion Sci. Technol. 27 (1): 123–131. https://doi.org/10.1081/DIS-200066860.
Niu, M., G. Li, L. Cao, X. Wang, and W. Wang. 2020. “Preparation of sulphate aluminate cement amended bentonite and its use in heavy metal adsorption.” J. Cleaner Prod. 256 (May): 120700. https://doi.org/10.1016/j.jclepro.2020.120700.
Özcan, A. S., Ö. Gök, and A. Özcan. 2009. “Adsorption of lead(II) ions onto 8-hydroxy quinoline-immobilized bentonite.” J. Hazard. Mater. 161 (1): 499–509. https://doi.org/10.1016/j.jhazmat.2008.04.002.
Permien, T., and G. Lagaly. 1995. “The rheological and colloidal properties of bentonite dispersions in the presence of organic compounds V. Bentonite and sodium montmorillonite and surfactants.” Clays Clay Miner. 43 (2): 229–236. https://doi.org/10.1346/CCMN.1995.0430210.
Ray, S., A. K. Mishra, and A. S. Kalamdhad. 2020. “Equilibrium, kinetic and hydraulic study of different Indian bentonites in presence of lead.” Eur. J. Environ. Civ. Eng. 1–20. https://doi.org/10.1080/19648189.2020.1754297.
Rowe, R. K. 1995. Leachate characteristics for MSW landfills. London: Univ. of Western Ontario.
Saja, S., A. Bouazizi, B. Achiou, H. Ouaddari, A. Karim, M. Ouammou, A. Aaddane, J. Bennazha, and S. A. Younssi. 2020. “Fabrication of low-cost ceramic ultrafiltration membrane made from bentonite clay and its application for soluble dyes removal.” J. Eur. Ceram. Soc. 40 (6): 2453–2462. https://doi.org/10.1016/j.jeurceramsoc.2020.01.057.
Sari, A., M. Tuzen, D. Citak, and M. Soylak. 2007. “Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay.” J. Hazard. Mater. 149 (2): 283–291. https://doi.org/10.1016/j.jhazmat.2007.03.078.
Svensson, P. D., and S. Hansen. 2013. “Combined salt and temperature impact on montmorillonite hydration.” Clays Clay Miner. 61 (4): 328–341. https://doi.org/10.1346/CCMN.2013.0610412.
Tahir, S. S., and R. Naseem. 2007. “Removal of Cr(III) from tannery wastewater by adsorption onto bentonite clay.” Sep. Purif. Technol. 53 (3): 312–321. https://doi.org/10.1016/j.seppur.2006.08.008.
Tohdee, K., L. Kaewsichan, and Asadullah. 2018. “Enhancement of adsorption efficiency of heavy metal Cu(II) and Zn(II) onto cationic surfactant modified bentonite.” J. Environ. Chem. Eng. 6 (2): 2821–2828. https://doi.org/10.1016/j.jece.2018.04.030.
Uddin, M. K. 2017. “A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade.” Chem. Eng. J. 308 (Jan): 438–462. https://doi.org/10.1016/j.cej.2016.09.029.
Wang, S., Y. Dong, M. He, L. Chen, and X. Yu. 2009. “Characterization of GMZ bentonite and its application in the adsorption of Pb(II) from aqueous solutions.” Appl. Clay Sci. 43 (2): 164–171. https://doi.org/10.1016/j.clay.2008.07.028.
Wilkinson, N., A. Metaxas, C. Quinney, S. Wickramaratne, T. M. Reineke, and C. S. Dutcher. 2018. “pH dependence of bentonite aggregate size and morphology on polymer-clay flocculation.” Colloids Surf., A 537 (Jan): 281–286. https://doi.org/10.1016/j.colsurfa.2017.10.007.
Xu, D., D. Shao, C. Chen, A. Ren, and X. Wang. 2006. “Effect of pH and fulvic acid on sorption and complexation of cobalt onto bare and FA bound MX-80 bentonite.” Radiochim. Acta 94 (2): 97–102. https://doi.org/10.1524/ract.2006.94.2.97.
Xu, D., X. L. Tan, C. L. Chen, and X. K. Wang. 2008. “Adsorption of Pb(II) from aqueous solution to MX-80 bentonite: Effect of pH, ionic strength, foreign ions and temperature.” Appl. Clay Sci. 41 (1–2): 37–46. https://doi.org/10.1016/j.clay.2007.09.004.
Yilmaz, N., and S. A. Yapar. 2004. “Adsorption properties of tetradecyl-and hexadecyl trimethylammonium bentonites.” Appl. Clay Sci. 27 (3–4): 223–228. https://doi.org/10.1016/j.clay.2004.08.001.
Yin, J., C. Deng, Z. Yu, X. Wang, and G. Xu. 2018. “Effective removal of lead ions from aqueous solution using nano illite/smectite clay: Isotherm, kinetic, and thermodynamic modeling of adsorption.” Water 10 (2): 210. https://doi.org/10.3390/w10020210.
Zahafa, F., R. Maroufa, F. Ouadjeniaa, and J. Schottb. 2018. “Kinetic and thermodynamic studies of the adsorption of Pb (II), Cr (III) and Cu (II) onto modified bentonite.” Desalin. Water Treat. 131: 282–290. https://doi.org/10.5004/dwt.2018.23060.
Zhirong, L., M. A. Uddin, and S. Zhanxue. 2011. “FT-IR and XRD analysis of natural Na-bentonite and Cu(II)-loaded Na-bentonite.” Spectrochim. Acta, Part A 79 (5): 1013–1016. https://doi.org/10.1016/j.saa.2011.04.013.
Zou, C., W. Jiang, J. Liang, X. Sun, and Y. Guan. 2019. “Removal of Pb(II) from aqueous solutions by adsorption on magnetic bentonite.” Environ. Sci. Pollut. Res. 26 (2): 1315–1322. https://doi.org/10.1007/s11356-018-3652-0.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 148Issue 2February 2022

History

Received: Feb 18, 2021
Accepted: Oct 17, 2021
Published online: Dec 9, 2021
Published in print: Feb 1, 2022
Discussion open until: May 9, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Research Scholar, Dept. of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India. Email: [email protected]
Professor, Dept. of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India (corresponding author). ORCID: https://orcid.org/0000-0003-2566-6901. Email: [email protected]; [email protected]
Associate Professor, Dept. of Civil Engineering, Indian Institute of Technology, Madras, Chennai, Tamil Nadu 600036, India. ORCID: https://orcid.org/0000-0002-7972-6116. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share