Technical Papers
Nov 8, 2021

Impact Assessment of Mixed Liquor Suspended Solids from Polyurethane Media Effluent on Ceramic Membrane Fouling in Anaerobic Hybrid Membrane Bioreactor

Publication: Journal of Environmental Engineering
Volume 148, Issue 1

Abstract

Long-term experiments were undertaken to evaluate the role of polyurethane foam (PUF) on performance and in alleviation of fouling in a ceramic membrane integrated in an anaerobic hybrid membrane bioreactor (An-HMBR), treating high-strength wastewater. A mass balance equation was also developed to assess the mixed liquor suspended solids (MLSS) concentration in PUF effluent by taking into account the “sloughing” of the biofilm layer. Results showed that MLSS concentration was overpredicted by the equation in the final stages and this was attributed to the retention of microbial dead mass in the interstices of PUF. This study revealed that the pore-blocking mechanism was dominant during the initial stages of reactor operation followed by cake layer formation in the final stage of treatment. Reversible fouling (98%) dominated over irreversible fouling (0.9%), which also supported cake layer formation. Increasing hydraulic retention time (HRT) and decreasing sludge retention time (SRT) resulted in higher concentration of soluble microbial products (SMP) and extracellular polymeric substances (EPS) in the suspended sludge, PUF biomass, and cake layer attached to the membrane. This, in turn, resulted in increasing the membrane resistance and fouling.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published paper.

References

APHA (American Public Health Association). 2012. Standard methods for the examination of water and wastewater. Washington, DC: APHA.
Aslam, M., P. L. McCarty, C. Shin, J. Bae, and J. Kim. 2017. “Low energy single-staged anaerobic fluidized bed ceramic membrane bioreactor (AFCMBR) for wastewater treatment.” Bioresour. Technol. 240 (Sep): 33–41. https://doi.org/10.1016/j.biortech.2017.03.017.
Bae, T.-H., and T.-M. Tak. 2005. “Interpretation of fouling characteristics of ultrafiltration membranes during the filtration of membrane bioreactor mixed liquor.” J. Membr. Sci. 264 (1–2): 151–160. https://doi.org/10.1016/j.memsci.2005.04.037.
Bakar, S. N.-H. A., H. A. Hasan, A. W. Mohammad, S. R. Sheikh Abdullah, T. Y. Haan, R. Ngteni, and K. M. M. Yusof. 2018. “A review of moving-bed biofilm reactor technology for palm oil mill effluent treatment.” J. Cleaner Prod. 171 (Jan): 1532–1545. https://doi.org/10.1016/j.jclepro.2017.10.100.
Balcıoglu, G., G. Yilmaz, and Z. B. Gönder. 2021. “Evaluation of anaerobic membrane bioreactor (AnMBR) treating confectionery wastewater at long-term operation under different organic loading rates: Performance and membrane fouling.” Chem. Eng. J. 404 (Jan): 126261. https://doi.org/10.1016/j.cej.2020.126261.
Barker, D. J., and D. C. Stuckey. 1999. “A review of soluble microbial products (SMP) in wastewater treatment systems.” Water Res. 33 (14): 3063–3082. https://doi.org/10.1016/S0043-1354(99)00022-6.
Berkessa, Y. W., B. Yan, T. Li, M. Tan, Z. She, V. Jegatheesan, H. Jiang, and Y. Zhang. 2018. “Novel anaerobic membrane bioreactor (AnMBR) design for wastewater treatment at long HRT and high solid concentration.” Bioresour. Technol. 250 (Feb): 281–289. https://doi.org/10.1016/j.biortech.2017.11.025.
Burman, I., and A. Sinha. 2018. “A review on membrane fouling in membrane bioreactors: Control and mitigation.” In Environmental contaminants: Measurement, modelling and control, edited by T. Gupta, A. K. Agarwal, R. A. Agarwal, and N. K. Labhsetwar, 281–315. Singapore: Springer.
Burman, I., and A. Sinha. 2020. “Performance evaluation and substrate removal kinetics in an up-flow anaerobic hybrid membrane bioreactor treating simulated high-strength wastewater.” Environ. Technol. 41 (3): 309–321. https://doi.org/10.1080/09593330.2018.1498132.
Charfi, A., N. Ben Amar, and J. Harmand. 2012. “Analysis of fouling mechanisms in anaerobic membrane bioreactors.” Water Res. 46 (8): 2637–2650. https://doi.org/10.1016/j.watres.2012.02.021.
Chen, C., W. S. Guo, H. H. Ngo, Y. Liu, B. Du, Q. Wei, D. Wei, D. D. Nguyen, and S. W. Chang. 2017. “Evaluation of a sponge assisted-granular anaerobic membrane bioreactor (SG-AnMBR) for municipal wastewater treatment.” Renewable Energy 111 (Oct): 620–627. https://doi.org/10.1016/j.renene.2017.04.055.
Deng, L., W. Guo, H. H. Ngo, J. Zhang, S. Liang, S. Xia, Z. Zhang, and J. Li. 2014. “A comparison study on membrane fouling in a sponge-submerged membrane bioreactor and a conventional membrane bioreactor.” Bioresour. Technol. 165 (Aug): 69–74. https://doi.org/10.1016/j.biortech.2014.02.111.
Dilaver, M., S. M. Hocaoğlu, G. Soydemir, M. Dursun, B. Keskinler, İ. Koyuncu, and M. Ağtaş. 2018. “Hot wastewater recovery by using ceramic membrane ultrafiltration and its reusability in textile industry.” J. Cleaner Prod. 171 (Jan): 220–233. https://doi.org/10.1016/j.jclepro.2017.10.015.
Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. “Colorimetric method for determination of sugars and related substances.” Anal. Chem. 28 (3): 350–356. https://doi.org/10.1021/ac60111a017.
Field, R. W., D. Wu, J. A. Howell, and B. B. Gupta. 1995. “Critical flux concept for microfiltration fouling.” J. Membr. Sci. 100 (3): 259–272. https://doi.org/10.1016/0376-7388(94)00265-Z.
Guo, W., H. H. Ngo, F. Dharmawan, and C. G. Palmer. 2010. “Roles of polyurethane foam in aerobic moving and fixed bed bioreactors.” Bioresour. Technol. 101 (5): 1435–1439. https://doi.org/10.1016/j.biortech.2009.05.062.
Guo, W., H. H. Ngo, C. G. Palmer, W. Xing, A. Y. J. Hu, and A. Listowski. 2009. “Roles of sponge sizes and membrane types in a single stage sponge-submerged membrane bioreactor for improving nutrient removal from wastewater for reuse.” Desalination 249 (2): 672–676. https://doi.org/10.1016/j.desal.2009.01.030.
Hamza, R. A., O. T. Iorhemen, and J. H. Tay. 2016. “Advances in biological systems for the treatment of high-strength wastewater.” J. Water Process Eng. 10 (Apr): 128–142. https://doi.org/10.1016/j.jwpe.2016.02.008.
Hermia, J. 1982. “Constant pressure blocking filtration laws—Application to powder-law non-newtonian fluids.” Trans. Inst. Chem. Eng. 60 (N3): 183–187.
Huang, Z., S. L. Ong, and H. Y. Ng. 2011. “Submerged anaerobic membrane bioreactor for low-strength wastewater treatment: Effect of HRT and SRT on treatment performance and membrane fouling.” Water Res. 45 (2): 705–713. https://doi.org/10.1016/j.watres.2010.08.035.
Hwang, K. J., C. Y. Liao, and K. L. Tung. 2008. “Effect of membrane pore size on the particle fouling in membrane filtration.” Desalination 234 (1–3): 16–23. https://doi.org/10.1016/j.desal.2007.09.065.
Jamal Khan, S., S. Ilyas, S. Javid, C. Visvanathan, and V. Jegatheesan. 2011. “Performance of suspended and attached growth MBR systems in treating high strength synthetic wastewater.” Bioresour. Technol. 102 (9): 5331–5336. https://doi.org/10.1016/j.biortech.2010.09.100.
Jeison, D., C. M. Plugge, A. Pereira, and J. B. van Lier. 2009. “Effects of the acidogenic biomass on the performance of an anaerobic membrane bioreactor for wastewater treatment.” Bioresour. Technol. 100 (6): 1951–1956. https://doi.org/10.1016/j.biortech.2008.10.028.
Jin, L., S. L. Ong, and H. Y. Ng. 2013. “Fouling control mechanism by suspended biofilm carriers addition in submerged ceramic membrane bioreactors.” J. Membr. Sci. 427 (Jan): 250–258. https://doi.org/10.1016/j.memsci.2012.09.016.
Juntawang, C., C. Rongsayamanont, and E. Khan. 2017. “Fouling characterization in entrapped cells-based-membrane bioreactor treating wastewater.” Sep. Purif. Technol. 175 (Mar): 321–329. https://doi.org/10.1016/j.seppur.2016.11.045.
Kang, I. J., S. H. Yoon, and C. H. Lee. 2002. “Comparison of the filtration characteristics of organic and inorganic membranes in a membrane-coupled anaerobic bioreactor.” Water Res. 36 (7): 1803–1813. https://doi.org/10.1016/S0043-1354(01)00388-8.
Katsoufidou, K., S. G. Yiantsios, and A. J. Karabelas. 2005. “A study of ultrafiltration membrane fouling by humic acids and flux recovery by backwashing: Experiments and modeling.” J. Membr. Sci. 266 (1–2): 40–50. https://doi.org/10.1016/j.memsci.2005.05.009.
Kaya, Y., A. M. Bacaksiz, H. Bayrak, I. Vergili, Z. B. Gönder, H. Hasar, and G. Yilmaz. 2019. “Investigation of membrane fouling in an anaerobic membrane bioreactor (AnMBR) treating pharmaceutical wastewater.” J. Water Process Eng. 31 (Oct): 100822. https://doi.org/10.1016/j.jwpe.2019.100822.
Khan, M. A., H. H. Ngo, W. S. Guo, Y. W. Liu, J. L. Zhou, J. Zhang, S. Liang, B. J. Ni, X. B. Zhang, and J. Wang. 2016. “Comparing the value of bioproducts from different stages of anaerobic membrane bioreactors.” Bioresour. Technol. 214 (Aug): 816–825. https://doi.org/10.1016/j.biortech.2016.05.013.
Khan, S. J., S. Ilyas, and Z. U. Rehman. 2013. “Impact of nitrogen loading rates on treatment performance of domestic wastewater and fouling propensity in submerged membrane bioreactor (MBR).” Bioresour. Technol. 141 (Aug): 46–49. https://doi.org/10.1016/j.biortech.2013.03.196.
Kurita, T., T. Mogi, and K. Kimura. 2016. “Influence of different biofilm carriers on the operation and membrane fouling of submerged membrane bioreactors.” Sep. Purif. Technol. 169 (Sep): 43–49. https://doi.org/10.1016/j.seppur.2016.05.026.
Lee, S.-M., J.-Y. Jung, and Y.-C. Chung. 2001. “Novel method for enhancing permeate flux of submerged membrane system in two-phase anaerobic reactor.” Water Res. 35 (2): 471–477. https://doi.org/10.1016/S0043-1354(00)00255-4.
Lesage, N., M. Sperandio, and C. Cabassud. 2008. “Study of a hybrid process: Adsorption on activated carbon/membrane bioreactor for the treatment of an industrial wastewater.” Chem. Eng. Process. Process Intensif. 47 (3): 303–307. https://doi.org/10.1016/j.cep.2007.01.021.
Li, X., and X. Wang. 2006. “Modelling of membrane fouling in a submerged membrane bioreactor.” J. Membr. Sci. 278 (1–2): 151–161. https://doi.org/10.1016/j.memsci.2005.10.051.
Lima, C. A. A., R. Ribeiro, E. Foresti, and M. Zaiat. 2005. “Morphological study of biomass during the start-up period of a fixed-bed anaerobic reactor treating domestic sewage.” Braz. Arch. Biol. Technol. 48 (5): 841–849. https://doi.org/10.1590/S1516-89132005000600020.
Lin, H., W. Peng, M. Zhang, J. Chen, H. Hong, and Y. Zhang. 2013. “A review on anaerobic membrane bioreactors: Applications, membrane fouling and future perspectives.” Desalination 314 (Apr): 169–188. https://doi.org/10.1016/j.desal.2013.01.019.
Liu, Y., H. Liu, L. Cui, and K. Zhang. 2012. “The ratio of food-to-microorganism (F/M) on membrane fouling of anaerobic membrane bioreactors treating low-strength wastewater.” Desalination 297 (Jul): 97–103. https://doi.org/10.1016/j.desal.2012.04.026.
Liu, Y., X. Zhang, H. H. Ngo, W. Guo, H. Wen, L. Deng, Y. Li, and J. Guo. 2018. “Specific approach for membrane fouling control and better treatment performance of an anaerobic submerged membrane bioreactor.” Bioresour. Technol. 268 (Nov): 658–664. https://doi.org/10.1016/j.biortech.2018.08.043.
Low, S. L., S. L. Ong, and H. Y. Ng. 2016. “Characterization of membrane fouling in submerged ceramic membrane photobioreactors fed with effluent from membrane bioreactors.” Chem. Eng. J. 290 (Apr): 91–102. https://doi.org/10.1016/j.cej.2016.01.005.
Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. “Protein measurement with the Folin phenol reagent.” J. Biol. Chem. 193 (1): 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6.
Luján-Facundo, M.-J., J.-A. Mendoza-Roca, B. Cuartas-Uribe, and S. Álvarez-Blanco. 2017. “Membrane fouling in whey processing and subsequent cleaning with ultrasounds for a more sustainable process.” J. Cleaner Prod. 143 (Feb): 804–813. https://doi.org/10.1016/j.jclepro.2016.12.043.
Maqbool, T., V. L. Quang, J. Cho, and J. Hur. 2016. “Characterizing fluorescent dissolved organic matter in a membrane bioreactor via excitation–emission matrix combined with parallel factor analysis.” Bioresour. Technol. 209 (Jun): 31–39. https://doi.org/10.1016/j.biortech.2016.02.089.
Mei, X., P. J. Quek, Z. Wang, and H. Y. Ng. 2017. “Alkali-assisted membrane cleaning for fouling control of anaerobic ceramic membrane bioreactor.” Bioresour. Technol. 240 (Sep): 25–32. https://doi.org/10.1016/j.biortech.2017.02.052.
Meng, F., H. Zhang, Y. Li, X. Zhang, and F. Yang. 2005. “Application of fractal permeation model to investigate membrane fouling in membrane bioreactor.” J. Membr. Sci. 262 (1–2): 107–116. https://doi.org/10.1016/j.memsci.2005.04.013.
Nguyen, T. T., H. H. Ngo, W. Guo, S. Phuntsho, and J. Li. 2011. “A new sponge tray bioreactor in primary treated sewage effluent treatment.” Bioresour. Technol. 102 (9): 5444–5447. https://doi.org/10.1016/j.biortech.2010.11.015.
Prieto, A. L., H. Futselaar, P. N. L. Lens, R. Bair, and D. H. Yeh. 2013. “Development and start up of a gas-lift anaerobic membrane bioreactor (Gl-AnMBR) for conversion of sewage to energy, water and nutrients.” J. Membr. Sci. 441 (Aug): 158–167. https://doi.org/10.1016/j.memsci.2013.02.016.
Rezaei, M., and M. R. Mehrnia. 2014. “The influence of zeolite (clinoptilolite) on the performance of a hybrid membrane bioreactor.” Bioresour. Technol. 158 (Apr): 25–31. https://doi.org/10.1016/j.biortech.2014.01.138.
Sabia, G., M. Ferraris, and A. Spagni. 2016. “Model-based analysis of the effect of different operating conditions on fouling mechanisms in a membrane bioreactor.” Environ. Sci. Pollut. Res. 23 (2): 1598–1609. https://doi.org/10.1007/s11356-015-5372-z.
Sağ, Y., A. Kaya, and T. Kutsal. 2000. “Lead, copper and zinc biosorption from bicomponent systems modelled by empirical Freundlich isotherm.” Appl. Microbiol. Biotechnol. 53 (3): 338–341. https://doi.org/10.1007/s002530050031.
Salazar-Peláez, M. L., J. M. Morgan-Sagastume, and A. Noyola. 2011. “Influence of hydraulic retention time on fouling in a UASB coupled with an external ultrafiltration membrane treating synthetic municipal wastewater.” Desalination 277 (1–3): 164–170. https://doi.org/10.1016/j.desal.2011.04.021.
Sancinetti, G. P., L. T. Sader, M. B. A. Varesche, E. L. C. Amorim, S. P. F. Omena, and E. L. Silva. 2012. “Phenol degradation in an anaerobic fluidized bed reactor packed with low density support materials.” Braz. J. Chem. Eng. 29 (1): 87–98. https://doi.org/10.1590/S0104-66322012000100010.
Stuckey, D. C. 2012. “Recent developments in anaerobic membrane reactors.” Bioresour. Technol. 122 (Oct): 137–148. https://doi.org/10.1016/j.biortech.2012.05.138.
Trzcinski, A. P., and D. C. Stuckey. 2009. “Continuous treatment of the organic fraction of municipal solid waste in an anaerobic two-stage membrane process with liquid recycle.” Water Res. 43 (9): 2449–2462. https://doi.org/10.1016/j.watres.2009.03.030.
Trzcinski, A. P., and D. C. Stuckey. 2010. “Treatment of municipal solid waste leachate using a submerged anaerobic membrane bioreactor at mesophilic and psychrophilic temperatures: Analysis of recalcitrants in the permeate using GC-MS.” Water Res. 44 (3): 671–680. https://doi.org/10.1016/j.watres.2009.09.043.
Varesche, M. B., M. Zaiat, L. G. T. Vieira, R. F. Vazoller, and E. Foresti. 1997. “Microbial colonization of polyurethane foam matrices in horizontal-flow anaerobic immobilized-sludge reactor.” Appl. Microbiol. Biotechnol. 48 (4): 534–538. https://doi.org/10.1007/s002530051092.
Wang, H., Z. Chen, J. Miao, and Y. Li. 2016. “Membrane fouling control of hybrid membrane bioreactor: Effect of extracellular polymeric substances.” Sep. Sci. Technol. 45 (7): 928–934. https://doi.org/10.1080/01496391003657030.
Wintgens, T., J. Rosen, T. Melin, C. Brepols, K. Drensla, and N. Engelhardt. 2003. “Modelling of a membrane bioreactor system for municipal wastewater treatment.” J. Membr. Sci. 216 (1–2): 55–65. https://doi.org/10.1016/S0376-7388(03)00046-2.
Wong, P. K., K. C. Lam, and C. M. So. 1993. “Removal and recovery of Cu (II) from industrial effluent by immobilized cells of Pseudomonas putida II-11.” Appl. Microbiol. Biotechnol. 39 (11): 127–131. https://doi.org/10.1007/BF00166861.
Wu, Z., Q. Wang, Z. Wang, Y. Ma, Q. Zhou, and D. Yang. 2010. “Membrane fouling properties under different filtration modes in a submerged membrane bioreactor.” Process Biochem. 45 (10): 1699–1706. https://doi.org/10.1016/j.procbio.2010.07.002.
Yang, S., F. Yang, Z. Fu, and R. Lei. 2009. “Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on organic carbon and nitrogen removal.” Bioresour. Technol. 100 (8): 2369–2374. https://doi.org/10.1016/j.biortech.2008.11.022.
Yoo, R., J. Kim, P. L. Mccarty, and J. Bae. 2012. “Anaerobic treatment of municipal wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR) system.” Bioresour. Technol. 120 (Sep): 133–139. https://doi.org/10.1016/j.biortech.2012.06.028.
Yu, W., N. Graham, Y. Yang, Z. Zhou, and L. C. Campos. 2015. “Effect of sludge retention on UF membrane fouling: The significance of sludge crystallization and EPS increase.” Water Res. 83 (Oct): 319–328. https://doi.org/10.1016/j.watres.2015.06.049.
Yue, X., Y. K. K. Koh, and H. Y. Ng. 2015. “Effects of dissolved organic matters (DOMs) on membrane fouling in anaerobic ceramic membrane bioreactors (AnCMBRs) treating domestic wastewater.” Water Res. 86 (Dec): 96–107. https://doi.org/10.1016/j.watres.2015.07.038.
Zhou, L. C., Y. F. Li, X. Bai, and G. H. Zhao. 2009. “Use of microorganisms immobilized on composite polyurethane foam to remove Cu (II) from aqueous solution.” J. Hazard. Mater. 167 (1–3): 1106–1113. https://doi.org/10.1016/j.jhazmat.2009.01.118.
Zsirai, T., P. Buzatu, P. Aerts, and S. Judd. 2012. “Efficacy of relaxation, backflushing, chemical cleaning and clogging removal for an immersed hollow fibre membrane bioreactor.” Water Res. 46 (14): 4499–4507. https://doi.org/10.1016/j.watres.2012.05.004.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 148Issue 1January 2022

History

Received: May 26, 2021
Accepted: Sep 16, 2021
Published online: Nov 8, 2021
Published in print: Jan 1, 2022
Discussion open until: Apr 8, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Isha Burman, Ph.D., S.M.ASCE
Research Scholar, Dept. of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India.
Alok Sinha, Ph.D. [email protected]
Professor, Dept. of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share