Abstract

Wetlands play an important role in biodiversity protection and ecosystem services provision but are susceptible to continuous degradation from the urban environment. In this study, objectives have been made to evaluate the spatial and seasonal (dry and wet periods) variations of diffusive fluxes of methane (CH4) and carbon dioxide (CO2) in water–atmosphere interface and limnological variables (water and sediment) in densely urbanized wetland areas of a tropical reservoir located in the São Paulo metropolitan area. Three sampling stations (S1, S2, and S3) covering areas with different levels of aquatic pollution and land use were evaluated. Nonparametric analysis and one-way analysis of variance indicated the spatial and temporal influence of limnological variability on CH4 and CO2 fluxes. In general, S2 presented higher mean emissions for CH4(0.31  gm2day1) and CO2(60.9  gm2day1) compared with the other two stations in both sampling periods, in which maximum mean fluxes in S1 were 0.20  gm2day1 and 18.3  gm2day1, whereas in S3 the mean values were <0.09  gm2day1 and 3.5  gm2day1 for CH4 and CO2, respectively. These higher emissions in S2 are related to the proximity to point source discharge of raw sewage from a very urbanized area, as well as lower dilution capacity (water depth=0.4  m). S3 showed lower gases emissions, while S1 presented the intermediate gases flows due to the deepest water column (2.5 m) and higher capacity of pollutant dilution. Thus, we associate higher CH4 and CO2 emissions with the proximity of pollution discharges and lower dilution capacity. The results indicate higher emissions for shallow water, highlight the influence of disorderly occupation in urban areas, and clarify that adequate wastewater treatment is urgent to prevent wetland degradation and to minimize CH4 and CO2 emissions.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors are grateful to the National Council for Scientific and Technological Development (CNPq) (Process 475080/2013-0) for project funding, Coordination for Improvement of Higher Education Personnel (CAPES) for the master’s fellowship to T.L.N., as well as to São Paulo State Research Support Foundation (FAPESP) for the Scientific Initiation Grant awarded to A.C.R.C. (Process 2014/01641-2). We also thank Multiuser Experimental Central facilities of Universidade Federal do ABC (UFABC) and trainees for field and laboratory support.

References

ABNT (Associação Brasileira de Normas Técnicas). 1984. Solo—Análise granulométrica. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 1986. Amostras de solos—Preparação para ensaios de compactação e caracterização. Rio de Janeiro, Brazil: ABNT.
Almeida, R. M., et al. 2016. “High primary production contrasts with intense carbon emission in a eutrophic tropical reservoir.” Front Microbiol. 7 (May): 1–13. https://doi.org/10.3389/fmicb.2016.00717.
Altor, A. E., and W. J. Mitsch. 2006. “Methane flux from created riparian marshes: Relationship to intermittent versus continuous inundation and emergent macrophytes.” Ecol. Eng. 28 (3): 224–234. https://doi.org/10.1016/j.ecoleng.2006.06.006.
Alvares, C. A., J. L. Stape, P. C. Sentelhas, J. L. De Moraes Gonçalves, and G. Sparovek. 2013. “Köppen’s climate classification map for Brazil.” Meteorol. Z. 22 (6): 711–728. https://doi.org/10.1127/0941-2948/2013/0507.
ANA (Agência Nacional de Águas). 2017. “Atlas Esgotos—Despoluição de bacias hidrográficas.” Accessed April 17, 2021. https://arquivos.ana.gov.br/imprensa/publicacoes/ATLASeESGOTOSDespoluicaodeBaciasHidrograficas-ResumoExecutivo_livro.pdf.
Andersen, J. M. 1976. “An ignition method for determination of total phosphorus in lake sediments.” Water Res. 10 (4): 329–331. https://doi.org/10.1016/0043-1354(76)90175-5.
APHA (American Public Health Association). 2012. Standard methods for the examination of water and wastewater. 22nd ed. Washington, DC: APHA.
Araujo, P., D. Hamburger, T. Jesus, R. Benassi, and V. Cicco. 2018. “Relação entre a qualidade da água e o uso do solo em microbacias do reservatório Billings, na Região Metropolitana de São Paulo - SP.” Revista de Gestão de Água da América Latina 15 (1): 3–18. https://doi.org/10.21168/rega.v15e2.
Attermeyer, K., S. Flury, R. Jayakumar, P. Fiener, K. Steger, V. Arya, and F. Wilken. 2016. Invasive floating macrophytes reduce greenhouse gas emissions from a small tropical lake. Berlin: Nature Publishing Group.
Beaulieu, J. J., T. DelSontro, and J. A. Downing. 2019. “Eutrophication will increase methane emissions from lakes and impoundments during the 21st century.” Nat. Commun. 10: 1375. https://doi.org/10.1038/s41467-019-09100-5.
Bechtel, B., et al. 2015. “CENSUS of cities: LCZ classification of cities (Level 0)—Workflow and initial results from various cities.” In Proc., 9th Int. Conf. of Urban Climate (ICUC9), 8–13. Hamburg, Germany: Univ. of Hamburg.
Beck, S. M., M. R. McHale, and G. R. Hess. 2016. “Beyond impervious: Urban land-cover pattern variation and implications for watershed management.” Environ. Manage. 58 (1): 15–30. https://doi.org/10.1007/s00267-016-0700-8.
Belger, L., B. R. Forsberg, and J. M. Melack. 2011. “Carbon dioxide and methane emissions from interfluvial wetlands in the upper Negro River basin, Brazil.” Biogeochemistry 105 (1): 171–183. https://doi.org/10.1007/s10533-010-9536-0.
Benassi, R. F., T. A. de Jesus, L. H. G. Coelho, W. S. Hanisch, M. R. Domingues, R. H. Taniwaki, T. A. G. Peduto, D. O. da Costa, M. L. M. Pompêo, and W. J. Mitsch. 2021. “Eutrophication effects on CH4 and CO2 fluxes in a highly urbanized tropical reservoir (Southeast, Brazil).” Environ. Sci. Pollut. Res. 28: 42261–42274. https://doi.org/10.1007/s11356-021-13573-7.
Bernal, B., and W. J. Mitsch. 2013. “Carbon sequestration in freshwater wetlands in Costa Rica and Botswana.” Biogeochemistry 115 (1–3): 77–93. https://doi.org/10.1007/s10533-012-9819-8.
Braga, B., and J. Kelman. 2020. “Facing the challenge of extreme climate: The case of metropolitan Sao Paulo.” Int. J. Water Resour. Dev. 36 (2–3): 278–291. https://doi.org/10.2166/wp.2016.113.
Bussmann, I., M. Pester, A. Brune, and B. Schink. 2004. “Preferential cultivation of Type II methanotrophic bacteria from littoral sediments (Lake Constance).” FEMS Microbiol Ecol 47 (2): 179–189. https://doi.org/10.1016/S0168-6496(03)00260-5.
Cardoso, S. J., G. R. Quadra, N. Resende, S. da, and F. Roland. 2019. “The role of sediments in the carbon and pollutant cycles in aquatic ecosystems—O papel dos sedimentos nos ciclos de carbono e poluentes em ecossistemas aquáticos.” Acta Limnologica Brasiliensia 31 (5): 1–13. https://doi.org/10.1590/s2179-975x8918.
Cardoso-Silva, S., P. Y. Nishimura, P. R. Padial, C. F. Mariani, M. Luiz, and M. Pompêo. 2014. “Compartmentalization and water quality: Billings reservoir case.” Accessed March 14, 2021. http://periodicos.puc-campinas.edu.br/seer/index.php/bioikos/article/view/2522/1864.
CETESB (Companhia Ambiental do Estado de São Paulo). 2015. “Índices de Qualidade das Águas.” Accessed July 1, 2021. https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2013/11/Cetesb_QualidadeAguasSuperficiais2015_ParteI_25-07.pdf.
CETESB (Companhia Ambiental do Estado de São Paulo). 2017. “Índices de Qualidade das Águas.” Accessed July 1, 2021. https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2018/06/Relat%C3%B3rio-de-Qualidade-das-%C3%81guas-Interiores-no-Estado-de-S%C3%A3o-Paulo-2017.pdf.
Chalupová, D., P. Havlíková, and B. Janský. 2012. “Water quality of selected fluvial lakes in the context of the Elbe River pollution and anthropogenic activities in the floodplain.” Environ. Monit. Assess. 184 (10): 6283–6295. https://doi.org/10.1007/s10661-011-2419-6.
Coelho, L. H. G., T. A. Jesus, M. Y. Kohatsu, G. T. Poccia, V. Chicarolli, K. Helwig, C. Hunter, J. Roberts, P. Teedon, and O. Pahl. 2020. “Estrogenic hormones in São Paulo waters (Brazil) and their relationship with environmental variables and Sinapis alba phytotoxicity.” Water Air Soil Pollut. 231 (5): 150. https://doi.org/10.1007/s11270-020-04477-2.
Cunha, M., et al. 2019. “Origin of the São Paulo yellow fever epidemic of 2017–2018 revealed through molecular epidemiological analysis of fatal cases.” Sci. Rep. 9 (1): 1–10. https://doi.org/10.1038/s41598-019-56650-1.
Dai, X., Y. Zhou, W. Ma, and L. Zhou. 2017. “Influence of spatial variation in land-use patterns and topography on water quality of the rivers inflowing to Fuxian Lake, a large deep lake in the plateau of southwestern China.” Ecol. Eng. 99 (Feb): 417–428. https://doi.org/10.1016/j.ecoleng.2016.11.011.
Davidson, T. A., J. Audet, E. Jeppesen, F. Landkildehus, T. L. Lauridsen, M. Søndergaard, and J. Syväranta. 2018. “Synergy between nutrients and warming enhances methane ebullition from experimental lakes.” Nat. Clim. Change 8 (2): 156–160. https://doi.org/10.1038/s41558-017-0063-z.
Deemer, B. R., J. A. Harrison, S. Li, J. J. Beaulieu, T. Delsontro, N. Barros, J. F. Bezerra-Neto, S. M. Powers, M. A. Dos Santos, and J. A. Vonk. 2016. “Greenhouse gas emissions from reservoir water surfaces: A new global synthesis.” Bioscience 66 (11): 949–964. https://doi.org/10.1093/biosci/biw117.
DelSontro, T., P. A. del Giorgio, and Y. T. Prairie. 2018. “No longer a paradox: The interaction between physical transport and biological processes explains the spatial distribution of surface water methane within and across lakes.” Ecosystems 21 (6): 1073–1087. https://doi.org/10.1007/s10021-017-0205-1.
Feinberg, A. I., A. Coulon, A. Stenke, S. Schwietzke, and T. Peter. 2018. “Isotopic source signatures: Impact of regional variability on the δ13CH4 trend and spatial distribution.” Atmos. Environ. 174 (Feb): 99–111. https://doi.org/10.1016/j.atmosenv.2017.11.037.
Gallant, K., P. Withey, D. Risk, G. C. van Kooten, and L. Spafford. 2020. “Measurement and economic valuation of carbon sequestration in Nova Scotian wetlands.” Ecol. Econ. 171 (Aug): 106619. https://doi.org/10.1016/j.ecolecon.2020.106619.
Google Earth Pro. 2021. “Location of metropolitan area of São Paulo with Billings complex and location of the Rio Grande reservoir at the Billings complex.” Accessed July 5, 2021. http://www.google.com/earth/index.html.
Grasel, D., P. M. Fearnside, J. R. S. Vitule, R. L. Bozelli, R. P. Mormul, R. R. Rodrigues, F. Wittmann, A. A. Agostinho, and J. A. Jarenkow. 2019. “Brazilian wetlands on the brink.” Biodiversity Conser. 28 (1): 255–257. https://doi.org/10.1007/s10531-018-1666-z.
Grinham, A., M. Dunbabin, and S. Albert. 2018. “Importance of sediment organic matter to methane ebullition in a sub-tropical freshwater reservoir.” Sci. Total Environ. 621 (Apr): 1199–1207. https://doi.org/10.1016/j.scitotenv.2017.10.108.
Hammer, Ø., D. A. T. Harper, and P. D. Ryan. 2001. “Past: Paleontological statistics software package for education and data analysis.” Palaeontol. Electronica 4 (1): 1–9.
Hodson, E. L., B. Poulter, N. E. Zimmermann, C. Prigent, and J. O. Kaplan. 2011. “The El Niño-Southern Oscillation and wetland methane interannual variability.” Geophys. Res. Lett. 38 (8): 23–42. https://doi.org/10.1029/2011GL046861.
IBGE (Instituto Brasileiro de Geografia e Estatística). 2020. “Pesquisa nacional de saneamento básico 2017: Abastecimento de água e esgotamento sanitário/IBGE.” Accessed July 2, 2021. https://biblioteca.ibge.gov.br/visualizacao/livros/liv101734.pdf.
Ierodiaconou, D., L. Laurenson, M. Leblanc, F. Stagnitti, G. Duff, S. Salzman, and V. Versace. 2005. “The consequences of land use change on nutrient exports: A regional scale assessment in south-west Victoria, Australia.” J. Environ. Manage. 74 (4): 305–316. https://doi.org/10.1016/j.jenvman.2004.09.010.
Instituto Trata Brasil. 2018. “Ranking do Saneamento.” Accessed July 2, 2021. http://www.tratabrasil.org.br/images/estudos/itb/ranking_2020/Relat%C3%B3rio_-_Ranking_Trata_Brasil_2020_1.pdf.
Jeppesen, E., M. Søndergaard, and Z. Liu. 2017. “Lake restoration and management in a climate change perspective: An introduction.” Water (Switzerland) 9 (2): 1–8. https://doi.org/10.3390/w9020122.
Junk, W. J., et al. 2014. “Brazilian wetlands: Their definition, delineation, and classification for research, sustainable management, and protection.” Aquat. Conserv. Mar. Freshwater Ecosyst. 24 (1): 5–22. https://doi.org/10.1002/aqc.2386.
Junk, W. J., M. T. F. Piedade, and J. Schoengart. 2016. “Brazilian wetlands: Classification.” In The Wetland book, 1569–1575. Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-90-481-9659-3_333.
Kayranli, B., M. Scholz, A. Mustafa, and Å. Hedmark. 2010. “Carbon storage and fluxes within freshwater wetlands: A critical review.” Wetlands 30 (1): 111–124. https://doi.org/10.1007/s13157-009-0003-4.
Keeler, B. L., S. Polasky, K. A. Brauman, K. A. Johnson, J. C. Finlay, A. O’Neille, K. Kovacs, and B. Dalzell. 2012. “Linking water quality and well-being for improved assessment and valuation of ecosystem services.” Proc. Nat. Acad. Sci. United States Am. 109 (45): 18619–18624. https://doi.org/10.1073/pnas.1215991109.
Kohatsu, M. Y., T. A. Jesus, L. H. G. Coelho, D. C. Peixoto, G. T. Poccia, and C. Hunter. 2018. “Fitotoxicidade de água superficial da Região Metropolitana de São Paulo utilizando bioensaio com Sinapis alba.” Acta Brasiliensis 2 (2): 58. https://doi.org/10.22571/2526-433885.
Leal, P. R., V. Moschini-Carlos, J. C. López-Doval, J. P. Cintra, J. K. Yamamoto, M. D. Bitencourt, R. F. Santos, G. C. Abreu, and M. L. M. Pompêo. 2018. “Impact of copper sulfate application at an urban Brazilian reservoir: A geostatistical and ecotoxicological approach.” Sci. Total Environ. 618 (3): 621–634. https://doi.org/10.1016/j.scitotenv.2017.07.095.
Lima, G. N., and V. O. Magaña Rueda. 2018. “The urban growth of the metropolitan area of Sao Paulo and its impact on the climate.” Weather Clim. Extremes 21 (May): 17–26. https://doi.org/10.1016/j.wace.2018.05.002.
Lima, I. B. T. 2002. “Emissão de metano por reservatórios hidrelétricos amazônicos através de leis de potência.” Ph.D. thesis, Centro de Energia Nuclear na Agricultura, Univ. of São Paulo.
Maltchik, L., V. Caleffi, C. Stenert, D. P. Batzer, M. T. F. Piedade, and W. J. Junk. 2018. “Legislation for wetland conservation in Brazil: Are existing terms and definitions sufficient?” Environ. Conserv. 45 (3): 301–305. https://doi.org/10.1017/S0376892917000522.
Marcelino, A. A., M. A. Santos, V. L. Xavier, C. S. Bezerra, C. R. O. Silva, M. A. Amorim, R. P. Rodrigues, and J. P. Rogerio. 2015. “Emissões difusivas de metano e de dióxido de carbono oriundas de dois reservatórios hidrelétricos.” Braz. J. Biol. 75 (2): 331–338. https://doi.org/10.1590/1519-6984.12313.
Mendonça, R., R. A. Müller, D. Clow, C. Verpoorter, P. Raymond, L. J. Tranvik, and S. Sobek. 2017. “Organic carbon burial in global lakes and reservoirs.” Nat. Commun. 8 (1): 1694. https://doi.org/10.1038/s41467-017-01789-6.
Mitsch, W. J., B. Bernal, and M. E. Hernandez. 2015. “Ecosystem services of wetlands.” Int. J. Biodiversity Sci. 11 (1): 1–4. https://doi.org/10.1080/21513732.2015.1006250.
Newton, A., et al. 2018. “Assessing, quantifying and valuing the ecosystem services of coastal lagoons.” J. Nat. Conserv. 44 (Mar): 50–65. https://doi.org/10.1016/j.jnc.2018.02.009.
Nishimura, P. Y., V. Moschini-Carlos, M. L. M. Pompêo, S. M. F. Gianessella-Galvão, and F. M. P. Saldanha-Corrêa. 2008. “Phytoplankton primary productivity in Rio Grande and Taquacetuba branches (Billings Reservoir, Sao Paulo, Brazil).” SIL Proc. 30 (1): 50–52. https://doi.org/10.1080/03680770.2008.11902081.
Parker, R. J., H. Boesch, J. McNorton, E. Comyn-Platt, M. Gloor, C. Wilson, M. P. Chipperfield, G. D. Hayman, and A. A. Bloom. 2018. “Evaluating year-to-year anomalies in tropical wetland methane emissions using satellite CH4 observations.” Remote Sens. Environ. 211 (Feb): 261–275. https://doi.org/10.1016/j.rse.2018.02.011.
Pierangeli, G. M. F., M. R. Domingues, T. A. Jesus, L. H. G. Coelho, W. S. Hanisch, M. L. M. Pompêo, F. T. Saia, G. B. Gregoracci, and R. F. Benassi. 2021. “Higher abundance of sediment methanogens and methanotrophs do not predict the atmospheric methane and carbon dioxide flows in eutrophic tropical freshwater reservoirs.” Front. Microbiol. 12 (Mar): 1–15. https://doi.org/10.3389/fmicb.2021.647921.
Puczko, K., and E. Jekatierynczuk-Rudczyk. 2020. “Analysis of urban land cover influence to organic carbon and nutrients in surface water via impacted groundwater.” Environ. Monit. Assess. 192 (2): 1–16. https://doi.org/10.1007/s10661-020-8095-7.
Ren, C., M. Cai, X. Li, L. Zhang, R. Wang, Y. Xu, and E. Ng. 2019. “Assessment of local climate zone classification maps of cities in China and feasible refinements.” Sci. Rep. 9 (1): 18848. https://doi.org/10.1038/s41598-019-55444-9.
Rügner, H., M. Schwientek, B. Beckingham, B. Kuch, and P. Grathwohl. 2013. “Turbidity as a proxy for total suspended solids (TSS) and particle facilitated pollutant transport in catchments.” Environ. Earth Sci. 69 (2): 373–380. https://doi.org/10.1007/s12665-013-2307-1.
Santino, M. B., C. da, and I. Bianchini Júnior. 2015. “Effects of detritus chemical composition on the anaerobic mineralization of Salvinia auriculata and Utricularia breviscapa.” Acta Limnologica Brasiliensia 27 (2): 202–212. https://doi.org/10.1590/S2179-975X2913.
Sarkar, P., M. Salami, Y. Githiora, R. Vieira, A. Navarro, D. Clavijo, and M. Padgurschi. 2020. “A conceptual model to understand the drivers of change in tropical wetlands: A comparative assessment in India and Brazil Un modelo conceptual para comprender los impulsores del cambio en los humedales tropicales: Una evaluación comparativa en India y Brasil.” Biota Neotrop. 20 (5): 1–14. https://doi.org/10.1590/1676-0611-bn-2019-0913.
Schrier-Uijl, A. P., A. J. Veraart, P. A. Leffelaar, F. Berendse, and E. M. Veenendaal. 2011. “Release of CO2 and CH4 from lakes and drainage ditches in temperate wetlands.” Biogeochemistry 102 (1): 265–279. https://doi.org/10.1007/s10533-010-9440-7.
Sha, C., W. J. Mitsch, Ü. Mander, J. Lu, J. Batson, L. Zhang, and W. He. 2011. “Methane emissions from freshwater riverine wetlands.” Ecol. Eng. 37 (1): 16–24. https://doi.org/10.1016/j.ecoleng.2010.07.022.
Silva, J. P., T. R. Canchala, H. J. Lubberding, E. J. Pena, and H. J. Gijzen. 2016. “Greenhouse gas emissions from a tropical Eutrophic a freshwater wetland.” World Acad. Sci. 10 (5): 518–524. https://doi.org/10.5281/zenodo.1124217.
Simmons, D. B. D., and D. Wallschläger. 2005. “A critical review of the biogeochemistry and ecotoxicology of selenium in Lotic and Lentic environments.” Environ. Toxicol. Chem. 24 (6): 1331–1343. https://doi.org/10.1897/04-176R.1.
SMA (Secretaria de Estado do Meio Ambiente)/CPLEA (Coordenadoria de Planejamento Ambiental Estratégico e Educação Ambiental). 2010. “Plano de Desenvolvimento e Proteção Ambiental da Bacia Hidrográfica do Reservatório Billings.” Accessed July 2, 2021. http://pdpa.cobrape.com.br/Arquivos/Pdpas/PDPA-Billings.pdf.
SSRH (Secretaria Estadual de Saneamento e Recursos Hídricos) and COBRAPE (Companhia Brasileira de Projetos e Empreendimentos). 2017. “Plano De Desenvolvimento E Proteção Ambiental (PDPA) da APRM Billings.” Accessed July 5, 2021. https://smastr20.blob.core.windows.net/mananciais/PDPA%20APRM%20Billings.pdf.
Stets, E. G., R. G. Striegl, G. R. Aiken, D. O. Rosenberry, and T. C. Winter. 2009. “Hydrologic support of carbon dioxide flux revealed by whole-lake carbon budgets.” J. Geophys. Res. Biogeosci. 114 (1): 1–14. https://doi.org/10.1029/2008JG000783.
Tangen, B. A., and S. Bansal. 2020. “Soil organic carbon stocks and sequestration rates of inland, freshwater wetlands: Sources of variability and uncertainty.” Sci. Total Environ. 749 (Dec): 141444. https://doi.org/10.1016/j.scitotenv.2020.141444.
Teixeira, Z., H. Teixeira, and J. C. Marques. 2014. “Systematic processes of land use/land cover change to identify relevant driving forces: Implications on water quality.” Sci. Total Environ. 470 (Feb): 1320–1335. https://doi.org/10.1016/j.scitotenv.2013.10.098.
Thompson, M. Y., D. Brandes, and A. D. Kney. 2012. “Using electronic conductivity and hardness data for rapid assessment of stream water quality.” J. Environ. Manage. 104 (2): 152–157. https://doi.org/10.1061/41114(371)346.
Tranvik, L. J., et al. 2009. “Lakes and reservoirs as regulators of carbon cycling and climate.” Limnol. Oceanogr. 54 (6): 2298–2314. https://doi.org/10.4319/lo.2009.54.6_part_2.2298.
van Bergen, T. J. H. M., N. Barros, R. Mendonça, R. C. H. Aben, I. H. J. Althuizen, V. Huszar, L. P. M. Lamers, M. Lürling, F. Roland, and S. Kosten. 2019. “Seasonal and diel variation in greenhouse gas emissions from an urban pond and its major drivers.” Limnol. Oceanogr. 64 (5): 2129–2139. https://doi.org/10.1002/lno.11173.
Verchot, L. V., E. A. Davidson, J. H. Cattânio, and I. L. Ackerman. 2000. “Land-use change and biogeochemical controls of methane fluxes in soils of eastern Amazonia.” Ecosystems 3 (1): 41–56. https://doi.org/10.1007/s100210000009.
Villa, A., J. Fölster, and K. Kyllmar. 2019. “Determining suspended solids and total phosphorus from turbidity: comparison of high-frequency sampling with conventional monitoring methods.” Environ. Monit. Assess. 191 (10): 1–16. https://doi.org/10.1007/s10661-019-7775-7.
Yang, Y., J. Chen, T. Tong, B. Li, T. He, Y. Liu, and S. Xie. 2019. “Eutrophication influences methanotrophic activity, abundance and community structure in freshwater lakes.” Sci. Total Environ. 662 (Apr): 863–872. https://doi.org/10.1016/j.scitotenv.2019.01.307.
Yuesi, W., and W. Yinghong. 2003. “Quick measurement of CH4, CO2 and N2O emissions from a short-plant ecosystem.” Adv. Atmos. Sci. 20 (5): 842–844. https://doi.org/10.1007/BF02915410.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 148Issue 1January 2022

History

Received: May 4, 2021
Accepted: Aug 12, 2021
Published online: Oct 18, 2021
Published in print: Jan 1, 2022
Discussion open until: Mar 18, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Tatiane do Nascimento Lopes [email protected]
Environmental Engineering Graduate, Environmental Science and Technology Post-Graduation Course, Center of Engineering, Modelling and Applied Social Sciences, Federal Univ. of ABC, Avenida dos Estados, 5001, Santo André, SP 09210-580, Brazil. Email: [email protected]
Professor, Environmental Science and Technology Post-Graduation Course, Center of Engineering, Modelling and Applied Social Sciences, Federal Univ. of ABC, Avenida dos Estados, 5001, Santo André, SP 09210-580, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-0175-5734. Email: [email protected]
Professor, Environmental Science and Technology Post-Graduation Course, Instituto Latino Americano de Tecnologia, Infraestrutura e Território, Federal Univ. of Latin-American Integration, AC Parque Tecnológico Itaipu, Conjunto B, Foz do Iguaçu, PR 85867-970, Brazil. ORCID: https://orcid.org/0000-0001-9178-0046. Email: [email protected]
Professor, Environmental Science and Technology Post-Graduation Course, Center of Engineering, Modelling and Applied Social Sciences, Federal Univ. of ABC, Avenida dos Estados, 5001, Santo André, SP 09210-580, Brazil. ORCID: https://orcid.org/0000-0002-5206-6584. Email: [email protected]
Ana Carolina Ricardo da Costa [email protected]
Environmental Engineering Graduate, Center of Engineering, Modelling and Applied Social Sciences, Federal Univ. of ABC, Avenida dos Estados, 5001, Santo André, SP 09210-580, Brazil. Email: [email protected]
Júlia Myriam de Almeida Pereira, Ph.D. [email protected]
Professor, Dept. of Fisheries Engineering, Universidade Estadual Paulista–Registro. Avenida Nelson Brihi Badur, 430, Registro, SP, CEP 11900-000, Brazil. Email: [email protected]
Professor, Environmental Science and Technology Post-Graduation Course, Center of Engineering, Modelling and Applied Social Sciences, Federal Univ. of ABC, Avenida dos Estados, 5001, Santo André, SP 09210-580, Brazil. ORCID: https://orcid.org/0000-0001-7412-5904. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Systems Accounting for Carbon Emissions by Hydropower Plant, Sustainability, 10.3390/su14116939, 14, 11, (6939), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share