Technical Papers
Sep 6, 2021

Selection of Optimized Binders for Dechlorination of Trichloroethylene-Contaminated Sites by Jet Grouting and Deep Soil Mixing

Publication: Journal of Environmental Engineering
Volume 147, Issue 11

Abstract

The remediation of sites contaminated with chlorinated hydrocarbons (CHCs) poses a challenge, especially in built up areas. Nanoscale zero-valent iron (nZVI) can reduce CHCs to nontoxic compounds. Jet grouting and deep soil mixing is used to overcome the difficulty of homogeneous distribution of nZVI in heterogeneous soils. Because these techniques facilitate a synergistic contaminant treatment and installation of construction elements, it is important to know the reactive interactions among involved compounds. In this study six binder materials [bentonite and ordinary portland cement (OPC), among others] have been investigated for interactions with the reductive dechlorination of trichloroethylene (TCE) by nZVI. The installation process was simulated in batch experiments, and the reaction products (CHC, intermediate products, and hydrogen) were observed using headspace gas chromatography. None of the binders inhibited dechlorination of TCE compared to a control experiment, and the two clay materials even catalyzed the reaction by a factor of up to 12.9. Hydrogen evolution was determined as a sensible indicator for the suitability of a particular binder, ranging from 12.8 to 4,400 mmol.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data and models that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

We want to thank Frank-Dieter Kopinke, Katrin Mackenzie, and Steffen Bleyl (Helmholtz-Centre for Environmental Research, Department Environmental Engineering) for numerous discussions. We are also grateful to Phillip Schöftner and Georg Waldner (formerly AIT) for their advice during the design of the experiments. Jan Slunsky of NanoIron kindly provided us with samples of nZVI. This research was funded by the Austrian Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and Technology (BMK) and Funding Management by Kommunalkredit Public Consulting (KPC) (Project No. B120005).

References

Adaska, W. S., S. W. Tresouthick, and P. B. West. 1991. Solidification and stabilization of wastes using portland cement. New York: Portland Cement Association.
Aitcin, P.-C., and R. J. Flatt. 2016. Science and technology of concrete admixture. Woodhead Publishing Series in Civil and Structural Engineering. Sherbrooke, Canada: Woodhead Publishing.
Allan, M. L., and L. E. Kukacka. 1995. “Blast furnace slag-modified grouts for in situ stabilization of chromium-contaminated soil.” Waste Manage. 15 (3): 193–202. https://doi.org/10.1016/0956-053X(95)00017-T.
Arancibia-Miranda, N., S. E. Baltazar, A. García, D. Muñoz-Lira, P. Sepúlveda, M. A. Rubio, and D. Altbir. 2016. “Nanoscale zero valent supported by zeolite and montmorillonite: Template effect of the removal of lead ion from an aqueous solution.” J. Hazard. Mater. 301 (Jan): 371–380. https://doi.org/10.1016/j.jhazmat.2015.09.007.
Arnold, W. A., and A. L. Roberts. 2000. “Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles.” Environ. Sci. Technol. 34 (9): 1794–1805. https://doi.org/10.1021/es990884q.
Bayraktar, O. Y. 2019. “The possibility of fly ash and blast furnace slag disposal by using these environmental wastes as substitutes in Portland cement.” Environ. Monit. Assess. 191 (9): 1–19. https://doi.org/10.1007/s10661-019-7741-4.
Bell, A., and K. Kirsch. 2013. Ground improvement. Boca Raton, FL: CRC Press.
Benedix, R. 2011. Bauchemie: Einführung in die Chemie für Bauingeneure and Architekten. Lepzig, Germany: Vieweg + Teubner.
Bereket, G., A. Z. Arog, and M. Z. Özel. 1997. “Removal of Pb(II), Cd(II), Cu(II), and Zn(II) from aqueous solutions by adsorption on bentonite.” J. Colloid Interface Sci. 187 (2): 338–343. https://doi.org/10.1006/jcis.1996.4537.
Berge, N. D., and C. A. Ramsburg. 2010. “Iron-mediated trichloroethene reduction within nonaqueous phase liquid.” J. Contam. Hydrol. 118 (3–4): 105–116. https://doi.org/10.1016/j.jconhyd.2010.07.006.
Bourdelle, F., R. Mosser-Ruck, L. Truche, C. Lorgeoux, I. Pignatelli, and N. Michau. 2017. “A new view on iron-claystone interactions under hydrothermal conditions (90°C) by monitoring in situ pH evolution and H2 generation.” Chem. Geol. 466 (Sep): 600–607. https://doi.org/10.1016/j.chemgeo.2017.07.009.
Brumovský, M., J. Filip, O. Malina, J. Oborná, O. Sracek, T. G. Reichenauer, P. Andrýsková, and R. Zbořil. 2020. “Core–shell Fe/FeS nanoparticles with controlled shell thickness for enhanced trichloroethylene removal.” ACS Appl. Mater. Interfaces 12 (31): 35424–35434. https://doi.org/10.1021/acsami.0c08626.
Burris, D. R., T. J. Campbell, and V. S. Manoranjan. 1995. “Sorption of trichloroethylene and tetrachloroethylene in a batch reactive metallic iron-water system.” Environ. Sci. Technol. 29 (11): 2850–2855. https://doi.org/10.1021/es00011a022.
Cai, X., X. Yu, X. Yu, Z. Wu, S. Li, and C. Yu. 2019. “Synthesis of illite/iron nanoparticles and their application as an adsorbent of lead ions.” Environ. Sci. Pollut. Res. 26 (28): 29449–29459. https://doi.org/10.1007/s11356-019-06136-4.
Chen, Z., T. Wang, X. Jin, Z. Chen, M. Megharaj, and R. Naidu. 2013. “Multifunctional kaolinite-supported nanoscale zero-valent iron used for the adsorption and degradation of crystal violet in aqueous solution.” J. Colloid Interface Sci. 398 (May): 59–66. https://doi.org/10.1016/j.jcis.2013.02.020.
Cho, D.-W., C.-M. Chon, B.-H. Jeon, Y. Kim, M. A. Khan, and H. Song. 2010. “The role of clay minerals in the reduction of nitrate in groundwater by zero-valent iron.” Chemosphere 81 (5): 611–616. https://doi.org/10.1016/j.chemosphere.2010.08.005.
Cope, D. B., and C. H. Benson. 2009. “Grey-iron foundry slags as reactive media for removing trichloroethylene from groundwater.” Environ. Sci. Technol. 43 (1): 169–175. https://doi.org/10.1021/es801359d.
Croce, P., A. Flora, and G. Modoni. 2014. Jet grouting: Technology, design and control. Boca Raton, FL: CRC Press.
Divakar, D., M. Romero-Sáez, B. Pereda-Ayo, A. Aranzabal, J. A. González-Marcos, and J. R. González-Velasco. 2011. “Catalytic oxidation of trichloroethylene over Fe-zeolites.” Catal. Today 176 (1): 357–360. https://doi.org/10.1016/j.cattod.2010.11.065.
Essler, R. D., and R. M. Kalin. 2005. “The use of deep soil mixing as part of the remediation strategy for contaminated sites.” In Proc., Int. Conf. on Deep Mixing Best Practice and Recent Advances, 323–330. Linkoping, Sweden: Swedish Deep Stabilization Research Centre.
Fan, D., G. O’Brien Johnson, P. G. Tratnyek, and R. L. Johnson. 2016. “Sulfidation of nano zerovalent iron (nZVI) for improved selectivity during in-situ chemical reduction (ISCR).” Environ. Sci. Technol. 50 (17): 9558–9565. https://doi.org/10.1021/acs.est.6b02170.
Gajda, E. 2012. “Möglichkeiten und Grenzen beim Einsatz alternativer Stoffe als Ersatz für zementhaltige Bindemittel.” Bachelor thesis, Institut und Versuchsanstalt für Geotechnik, TU Darmstadt.
Ghasemzadeh, P., and A. Bostani. 2017. “The removal of lead and nickel from the composted municipal waste and sewage sludge using nanoscale zero-valent iron fixed on quartz.” Ecotoxicol. Environ. Saf. 145 (Nov): 483–489. https://doi.org/10.1016/j.ecoenv.2017.06.066.
Giergiczny, Z., and A. Król. 2008. “Immobilization of heavy metals (Pb, Cu, Cr, Zn, Cd, Mn) in the mineral additions containing concrete composites.” J. Hazard. Mater. 160 (2–3): 247–255. https://doi.org/10.1016/j.jhazmat.2008.03.007.
Gitipour, S., N. Heidarzadeh, M. A. Hosseinpour, and A. Fathollahi. 2015. “Application of modified clays in geosynthetic clay liners for containment of petroleum contaminated sites.” Int. J. Environ. Res. 9 (1): 317–322.
Goodarzi, A. R., and M. Movahedrad. 2017. “Stabilization/solidification of zinc-contaminated kaolin clay using ground granulated blast-furnace slag and different types of activators.” Appl. Geochem. 81 (Jun): 155–165. https://doi.org/10.1016/j.apgeochem.2017.04.014.
Heller-Kallai, L., I. Micholavski, and A. Grayesvsky. 1989. “Evolution of hydrogen on dehydroxylation of clay minerals.” Am. Mineral. 74 (7–8): 818–820.
Hequet, V., P. Ricou, and P. Le Cloirec. 2001. “Removal of Cu2+ and Zn2+ in aqueous solutions by sorption onto mixed fly ash.” Fuel 80 (6): 481–487.
Holzer, C. 2007. Altlastensanierung in Österreich Effekte und Ausblick. Wien, Austria: Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft (BMLFUW).
Hwang, I., H.-J. Park, W.-H. Kang, and J.-Y. Park. 2005. “Reactivity of Fe(II)/cement systems in dechlorinating chlorinated ethylenes.” J. Hazard. Mater. 118 (1–3): 103–111. https://doi.org/10.1016/j.jhazmat.2004.10.002.
Itakura, T., D. W. Airey, and C. J. Leo. 2003. “The diffusion and sorption of volatile organic compounds through kaolinitic clayey soils.” J. Contam. Hydrol. 65 (3–4): 219–243. https://doi.org/10.1016/S0169-7722(03)00002-0.
Jafarpour, M. M., A. Foolad, M. K. Mansouri, Z. Nikbakhsh, and H. Saeedizade. 2010. “Ammonia removal from nitrogenous industrial waste water using Iranian natural zeolite of clinoptilolite type.” Int. J. Environ. Ecol. Eng. 4 (10): 7.
Jasmund, K., and G. Lagaly. 1993. Tone und tonminerale. Darmstadt, Germany: Steinkopff Verlag.
Jiang, M., X. Jin, X.-Q. Lu, and Z. Chen. 2010. “Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay.” Desalination 252 (1–3): 33–39. https://doi.org/10.1016/j.desal.2009.11.005.
Jung, B., J.-W. Shin, P. A. Ghorpade, and J.-Y. Park. 2013. “Dechlorination of liquid wastes containing chlorinated hydrocarbons by a binder mixture of cement and slag with Fe(II).” Sci. Total Environ. 449 (Apr): 443–450. https://doi.org/10.1016/j.scitotenv.2013.01.085.
Kang, W.-H., I. Hwang, and J.-Y. Park. 2006. “Dechlorination of trichloroethylene by a steel converter slag amended with Fe(II).” Chemosphere 62 (2): 285–293. https://doi.org/10.1016/j.chemosphere.2005.05.011.
Kim, S. A., S. Kamala-Kannan, K.-J. Lee, Y.-J. Park, P. J. Shea, W.-H. Lee, H.-M. Kim, and B.-T. Oh. 2013. “Removal of Pb(II) from aqueous solution by a zeolite–nanoscale zero-valent iron composite.” Chem. Eng. J. 217 (Feb): 54–60. https://doi.org/10.1016/j.cej.2012.11.097.
Ko, S., and B. Batchelor. 2010. “Effect of cement type on performance of ferrous iron–based degradative solidification and stabilization.” Environ. Eng. Sci. 27 (11): 977–987. https://doi.org/10.1089/ees.2010.0189.
Ko, S. B., and B. Batchelor. 2007. Identification of active agents for tetrachloroethylene degradation in portland cement slurry containing ferrous iron. Ph.D. thesis, Dept. of Civil Engineering, Texas A&M Univ.
Kret, E., A. Kiecak, G. Malina, I. Nijenhuis, and A. Postawa. 2015. “Identification of TCE and PCE sorption and biodegradation parameters in a sandy aquifer for fate and transport modelling: Batch and column studies.” Environ. Sci. Pollut. Res. 22 (13): 9877–9888. https://doi.org/10.1007/s11356-015-4156-9.
Kueper, B. H., H. F. Stroo, C. N. Vogel, and C. H. Ward. 2014. “Chlorinated solvent source zone remediation.” In SERDP ESTCP environmental remediation technology. Heidelberg, Germany: Springer.
Kumararaja, P., K. M. Manjaiah, S. C. Datta, and T. P. Ahammed Shabeer. 2014. “Potential of bentonite clay for heavy metal immobilization in soil.” Clay Res. 33 (2): 83–96.
Laumann, S. 2013. Assessment of innovative in situ techniques for groundwater and soil remediation: Nanoremediation and thermal desorption. Wien, Australia: Universität Wien.
Lesnik, M. 2003. “Ermittlung der Reichweite beim Düsenstrahlverfahren unter Berücksichtigung der Herstellparameter und der Bodeneigenschaften mittels Rückflussanalyse.” Ph.D. thesis, Institut für Bodenmechanik und Grundbau, Technische Universität Graz.
Li, Z., H. K. Jones, R. S. Bowman, and R. Helferich. 1999. “Enhanced reduction of chromate and PCE by pelletized surfactant-modified zeolite/zerovalent iron.” Environ. Sci. Technol. 33 (23): 4326–4330. https://doi.org/10.1021/es990334s.
Liu, Y., and G. V. Lowry. 2006. “Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination.” Environ. Sci. Technol. 40 (19): 6085–6090. https://doi.org/10.1021/es060685o.
Liu, Y., S. A. Majetich, R. D. Tilton, D. S. Sholl, and G. V. Lowry. 2005. “TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties.” Environ. Sci. Technol. 39 (5): 1338–1345. https://doi.org/10.1021/es049195r.
Liu, Y., T. Phenrat, and G. V. Lowry. 2007. “Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution.” Environ. Sci. Technol. 41 (22): 7881–7887. https://doi.org/10.1021/es0711967.
Locher, F. W. 2000. Zement—Grundlagen der Herstellung und Verwendung. Düsseldorf, Germany: Verlag Bau & Technik.
Ma, L., Q. Wei, Y. Chen, Q. Song, C. Sun, Z. Wang, and G. Wu. 2018. “Removal of cadmium from aqueous solutions using industrial coal fly ash-nZVI.” R. Soc. Open Sci. 5 (2): 171051. https://doi.org/10.1098/rsos.171051.
Mozgawa, W., M. Król, W. Pichór, and W. Nocuń-Wczelik. 2011. “Immobilisation of selected ions in natural clinoptilolite incorporated in cement pastes.” In Proc., Intercem 2011. Madrid, Spain: Instituto de Ciencias de la Construcción “Eduardo Torroja”.
Pan, Y., J. Rossabi, C. Pan, and X. Xie. 2019. “Stabilization/solidification characteristics of organic clay contaminated by lead when using cement.” J. Hazard. Mater. 362 (Jan): 132–139. https://doi.org/10.1016/j.jhazmat.2018.09.010.
Phenrat, T., N. Saleh, K. Sirk, R. D. Tilton, and G. V. Lowry. 2007. “Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions.” Environ. Sci. Technol. 41 (1): 284–290. https://doi.org/10.1021/es061349a.
Plecas, I. B., and S. Dimovic. 2004. “Immobilization of industrial waste in cement-bentonite clay matrix.” Bull. Mater. Sci. 27 (2): 175–178. https://doi.org/10.1007/BF02708501.
Qin, H., X. Guan, J. Z. Bandstra, R. L. Johnson, and P. G. Tratnyek. 2018. “Modeling the kinetics of hydrogen formation by zerovalent iron: Effects of sulfidation on micro- and nano-scale particles.” Environ. Sci. Technol. 52 (23): 13887–13896. https://doi.org/10.1021/acs.est.8b04436.
Richardson, J. G., and G. W. Groves. 1992. “Microstructure and microanalysis of hardened cement pastes involving ground granulated blast-furnace slag.” J. Mater. Sci. 27 (22): 6204–6212. https://doi.org/10.1007/BF01133772.
Ricou, P., I. Lécuyer, and P. Le Cloirec. 1999. “Removal of Cu2+, Zn2+ and Pb2+ by adsorption onto fly ash and fly ash/lime mixing.” Water Sci. Technol. 39 (10–11): 239–247. https://doi.org/10.2166/wst.1999.0663.
Sander, R. 1999. Compilation of Henry’s law constants for inorganic and organic species of potential importance in environmental chemistry. Mainz, Germany: Max-Planck Institute of Chemistry.
Schöftner, P., G. Waldner, W. Lottermoser, M. Stöger-Pollach, P. Freitag, and T. G. Reichenauer. 2015. “Electron efficiency of nZVI does not change with variation of environmental parameters.” Sci. Total Environ. 535 (Dec): 69–78. https://doi.org/10.1016/j.scitotenv.2015.05.033.
Schrick, B., B. W. Hydutsky, J. L. Blough, and T. E. Mallouk. 2004. “Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater.” Chem. Mater. 16 (11): 2187–2193. https://doi.org/10.1021/cm0218108.
Song, S., D. Sohn, and H. M. Jennings. 2000. “Hydration of alkali-activated ground granulated blast furnace slag.” J. Mater. Sci. 35: 249–257.
Spitz, M. 2014. “Reduktion von Trichlorethen durch Eisen-Nanopartikel an Bentonit.” Batchelor thesis, Institut für angewandte Geowissenschaften, TU Graz.
Stark, J. 1999. Zement und Kalk: Der Baustoff als Werkstoff. Basel, Switzerland: Birkhäuser Verlag.
Tremblay, H., J. Duchesne, J. Locat, and S. Leroueil. 2002. “Influence of the nature of organic compounds on fine soil stabilization with cement.” Can. Geotech. J. 39 (3): 535–546. https://doi.org/10.1139/t02-002.
US EPA. 2015. “Superfund: National priorities list (NPL).” Accessed July 17, 2019. https://www.epa.gov/superfund/superfund-national-priorities-list-npl.
van Liedekerke, M., S. Rabl-Berger, M. Kibblewhite, G. Louwagie, and G. Prokop. 2014. Progress in the management of contaminated sites in Europe. Ispra, Italy: European Comission–Joint Research Center.
Vyšvařil, M., and P. Bayer. 2016. “Immobilization of heavy metals in natural zeolite-blended cement pastes.” Procedia Eng. 151 (Jan): 162–169. https://doi.org/10.1016/j.proeng.2016.07.363.
Wang, T., J. Su, X. Jin, Z. Chen, M. Megharaj, and R. Naidu. 2013. “Functional clay supported bimetallic nZVI/Pd nanoparticles used for removal of methyl orange from aqueous solution.” J. Hazard. Mater. 262 (Nov): 819–825. https://doi.org/10.1016/j.jhazmat.2013.09.028.
Wischers, G. 1980. Ansteifen und Erstarren von Zement und Beton. Düsseldorf, Germany: Deutscher Beton—Verein e.V.
Xu, A., S. L. Sarkar, and L. O. Nilsson. 1993. “Effect of fly ash on the microstructure of cement mortar.” Mater. Struct. 26 (7): 414–424. https://doi.org/10.1007/BF02472942.
Zhang, W. 2003. “Nanoscale iron particles for environmental remediation: An overview.” J. Nanopart. Res. 5 (3): 323–332. https://doi.org/10.1023/A:1025520116015.
Zhang, Y.-Y., H. Jiang, Y. Zhang, and J.-F. Xie. 2013. “The dispersity-dependent interaction between montmorillonite supported nZVI and Cr(VI) in aqueous solution.” Chem. Eng. J. 229 (Aug): 412–419. https://doi.org/10.1016/j.cej.2013.06.031.
Zhou, Z., C. Dai, X. Zhou, J. Zhao, and Y. Zhang. 2015. “The removal of antimony by novel NZVI-zeolite: The role of iron transformation.” Water Air Soil Pollut. 226 (3): 76. https://doi.org/10.1007/s11270-014-2293-2.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 147Issue 11November 2021

History

Received: Mar 26, 2021
Accepted: Jul 10, 2021
Published online: Sep 6, 2021
Published in print: Nov 1, 2021
Discussion open until: Feb 6, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Peter Freitag [email protected]
Design Engineer, Keller Grundbau Ges.mbH, Guglgasse 15/BT4/3a, 1110 Wien, Austria. Email: [email protected]
Holger Maurer, Ph.D. [email protected]
CEO, Geosystems Spezialbaustoffe GmbH (Rohrdorfer Zement), Sinning 1, D-83101 Rohrdorf, Germany. Email: [email protected]
Senior Scientist, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria (corresponding author). ORCID: https://orcid.org/0000-0002-4156-5425. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • In situ chemical remediation using the jet grouting technique: a field test, Environmental Geotechnics, 10.1680/jenge.21.00032, (1-11), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share