Technical Papers
Jul 20, 2021

Evaluating Different Quantitative PCR Assays to Enumerate Specific Microbial Populations in Anaerobic Digesters Treating Municipal Wastewater Solids

Publication: Journal of Environmental Engineering
Volume 147, Issue 10

Abstract

The goal of this research was to use and to validate different quantitative polymerase chain reaction (qPCR) assays to quantify the pertinent microbial populations in full-scale anaerobic digesters at municipal wastewater treatment facilities. Methanomicrobiales (40% of Archaea) and Methanosarcinales (35% of Archaea) were the most dominant methanogenic orders in the mesophilic anaerobic digesters, whereas the Methanobacteriales (40% of Archaea) were the most common in the thermophilic anaerobic digester. qPCR results were validated via comparisons with profiles of microbial community composition obtained by PCR-amplified 16S rRNA gene sequences. Exceptionally strong linear correlations (P<1010) were observed when comparing the microbiome profile with the qPCR results for Archaea, Methanomicrobiales, Methanosarcinales, Methanobacteriales, and Methanosarcinacea. In addition, core communities of both Bacteria and Archaea were observed in the mesophilic anaerobic digesters. This research demonstrates that monitoring microbial groups in full-scale anaerobic digesters is feasible via qPCR, providing the prerequisite tools needed to track and to understand microbial population dynamics in anaerobic digesters.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All DNA sequence data used during the study are available in the National Center for Biotechnology Information (NCBI) Sequence Read Archive under accession numbers PRJNA598721. All qPCR data are available from the corresponding author upon reasonable request.

Acknowledgments

Financial support was provided by the Minnesota Environment and Natural Resources Trust Fund. We thank the operators at the treatment facilities for collecting samples as well as Elizabeth Hill for technical assistance.

References

Anderson, K., P. Sallis, and S. Uyanik. 2003. “Anaerobic treatment processes.” In Handbook of water and wastewater microbiology, 391–426. Amsterdam, Netherlands: Elsevier.
Angelidaki, I., D. Karakashev, D. J. Batstone, C. M. Plugge, and A. J. Stams. 2011. “Biomethanation and its potential.” Methods Enzymol. 494: 327–351. https://doi.org/10.1016/B978-0-12-385112-3.00016-0.
Anyaoku, C. C., and S. Baroutian. 2018. “Decentralized anaerobic digestion systems for increased utilization of biogas from municipal solid waste.” Renewable Sustainable Energy Rev. 90 (Jul): 982–991. https://doi.org/10.1016/j.rser.2018.03.009.
Ariesyady, H. D., T. Ito, and S. Okabe. 2007. “Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester.” Water Res. 41 (7): 1554–1568. https://doi.org/10.1016/j.watres.2006.12.036.
Beecher, N., K. Crawford, N. Goldstein, G. Kester, M. Lono-Batura, and E. Dziezyk. 2007. A national biosolids regulation, quality, end use and disposal survey. Tamworth, NH: North East Biosolids and Residuals Association.
Dahle, H., and N.-K. Birkeland. 2006. “Thermovirga lienii gen. nov., sp. nov., a novel moderately thermophilic, anaerobic, amino-acid-degrading bacterium isolated from a North Sea oil well.” Int. J. Syst. Evol. Microbiol. 56 (7): 1539–1545. https://doi.org/10.1099/ijs.0.63894-0.
Demirel, B., and P. Scherer. 2008. “The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: A review.” Rev. Environ. Sci. Biotechnol. 7 (2): 173–190. https://doi.org/10.1007/s11157-008-9131-1.
Einen, J., I. H. Thorseth, and L. Øvreås. 2008. “Enumeration of Archaea and Bacteria in seafloor basalt using real-time quantitative PCR and fluorescence microscopy.” FEMS Microbiol. Lett. 282 (2): 182–187. https://doi.org/10.1111/j.1574-6968.2008.01119.x.
Ferry, J. G., P. H. Smith, and R. Wolfe. 1974. “Methanospirillum, a new genus of methanogenic bacteria, and characterization of Methanospirillum hungatii sp. nov.” Int. J. Syst. Evol. Microbiol. 24 (4): 465–469. https://doi.org/10.1099/00207713-24-4-465.
Gibson, D. G., L. Young, R.-Y. Chuang, J. C. Venter, C. A. Hutchison III and H. O. Smith. 2009. “Enzymatic assembly of DNA molecules up to several hundred kilobases.” Nat. Methods 6 (5): 343. https://doi.org/10.1038/nmeth.1318.
Gohl, D. M., et al. 2016. “Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies.” Nat. Biotechnol. 34 (9): 942–949. https://doi.org/10.1038/nbt.3601.
Imachi, H., S. Sakai, Y. Sekiguchi, S. Hanada, Y. Kamagata, A. Ohashi, and H. Harada. 2008. “Methanolinea tarda gen. nov., sp. nov., a methane-producing archaeon isolated from a methanogenic digester sludge.” Int. J. Syst. Evol. Microbiol. 58 (1): 294–301. https://doi.org/10.1099/ijs.0.65394-0.
Kendall, M. M., and D. R. Boone. 2006. “The order methanosarcinales.” In The Prokaryotes: Volume 3: Archaea. Bacteria: Firmicutes, Actinomycetes, 244–256. New York: Springer.
Kozich, J. J., S. L. Westcott, N. T. Baxter, S. K. Highlander, and P. D. Schloss. 2013. “Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform.” Appl. Environ. Microbiol. 79 (17): 5112–5120. https://doi.org/10.1128/AEM.01043-13.
LaPara, T. M., T. R. Burch, P. J. McNamara, D. T. Tan, M. Yan, and J. J. Eichmiller. 2011. “Tertiary-treated municipal wastewater is a significant point source of antibiotic resistance genes into Duluth-Superior Harbor.” Environ. Sci. Technol. 45 (22): 9543–9549. https://doi.org/10.1021/es202775r.
Liu, Y., D. L. Balkwill, H. C. Aldrich, G. R. Drake, and D. R. Boone. 1999. “Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii.” Int. J. Syst. Evol. Microbiol. 49 (2): 545–556. https://doi.org/10.1099/00207713-49-2-545.
Lovley, D. R., D. F. Dwyer, and M. J. Klug. 1982. “Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments.” Appl. Environ. Microbiol. 43 (6): 1373–1379. https://doi.org/10.1128/AEM.43.6.1373-1379.1982.
Lovley, D. R., and M. J. Klug. 1983. “Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations.” Appl. Environ. Microbiol. 45 (1): 187–192. https://doi.org/10.1128/AEM.45.1.187-192.1983.
Lyu, Z., N. Shao, T. Akinyemi, and W. B. Whitman. 2018. “Methanogenesis.” Curr. Biol. 28 (13): R727–R732. https://doi.org/10.1016/j.cub.2018.05.021.
May, T., M. Koch-Singenstreu, J. Ebling, R. Stantscheff, L. Müller, F. Jacobi, D. Polag, F. Keppler, and H. König. 2015. “Design and application of a synthetic DNA standard for real-time PCR analysis of microbial communities in a biogas digester.” Appl. Microbiol. Biotechnol. 99 (16): 6855–6863. https://doi.org/10.1007/s00253-015-6721-z.
McIlroy, S. J., A. M. Saunders, M. Albertsen, M. Nierychlo, B. McIlroy, A. A. Hansen, S. M. Karst, J. L. Nielsen, and P. H. Nielsen. 2015. “MiDAS: The field guide to the microbes of activated sludge.” Database 2015: bav062. https://doi.org/10.1093/database/bav062.
Moestedt, J., S. N. Påledal, and A. Schnürer. 2013. “The effect of substrate and operational parameters on the abundance of sulphate-reducing bacteria in industrial anaerobic biogas digesters.” Bioresour. Technol. 132 (Mar): 327–332. https://doi.org/10.1016/j.biortech.2013.01.043.
Narihiro, T., and Y. Sekiguchi. 2007. “Microbial communities in anaerobic digestion processes for waste and wastewater treatment: A microbiological update.” Curr. Opin. Biotechnol. 18 (3): 273–278. https://doi.org/10.1016/j.copbio.2007.04.003.
Narihiro, T., T. Terada, K. Kikuchi, A. Iguchi, M. Ikeda, T. Yamauchi, K. Shiraishi, Y. Kamagata, K. Nakamura, and Y. Sekiguchi. 2009. “Comparative analysis of bacterial and archaeal communities in methanogenic sludge granules from upflow anaerobic sludge blanket reactors treating various food-processing, high-strength organic wastewaters.” Microbes Environ. 24 (2): 88–96. https://doi.org/10.1264/jsme2.me08561.
Patel, G. B., and G. D. Sprott. 1990. “Methanosaeta concilii gen. nov., sp. nov. (“Methanothrix concilii”) and Methanosaeta thermoacetophila nom. rev., comb. nov.” Int. J. Syst. Evol. Microbiol. 40 (1): 79–82. https://doi.org/10.1099/00207713-40-1-79.
Rognes, T., T. Flouri, B. Nichols, C. Quince, and F. Mahé. 2016. “VSEARCH: A versatile open source tool for metagenomics.” PeerJ 4: e2584. https://doi.org/10.7717/peerj.2584.
Sakai, S., M. Ehara, I.-C. Tseng, T. Yamaguchi, S. L. Bräuer, H. Cadillo-Quiroz, S. H. Zinder, and H. Imachi. 2012. “Methanolinea mesophila sp. nov., a hydrogenotrophic methanogen isolated from rice field soil, and proposal of the archaeal family Methanoregulaceae fam. nov. within the order Methanomicrobiales.” Int. J. Syst. Evol. Microbiol. 62 (Pt_6): 1389–1395. https://doi.org/10.1099/ijs.0.035048-0.
Schloss, P. D., S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann, E. B. Hollister, R. A. Lesniewski, B. B. Oakley, D. H. Parks, and C. J. Robinson. 2009. “Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities.” Appl. Environ. Microbiol. 75 (23): 7537–7541. https://doi.org/10.1128/AEM.01541-09.
Schlüter, A., T. Bekel, N. N. Diaz, M. Dondrup, R. Eichenlaub, K.-H. Gartemann, I. Krahn, L. Krause, H. Krömeke, and O. Kruse. 2008. “The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology.” J. Biotechnol. 136 (1–2): 77–90. https://doi.org/10.1016/j.jbiotec.2008.05.008.
Shu, D., Y. He, H. Yue, and Q. Wang. 2015. “Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing.” Bioresour. Technol. 186 (Jun): 163–172. https://doi.org/10.1016/j.biortech.2015.03.072.
Speece, R. E. 1983. “Anaerobic biotechnology for industrial wastewater treatment.” Environ. Sci. Technol. 17 (9): 416A–427A. https://doi.org/10.1021/es00115a725.
Sundberg, C., W. A. Al-Soud, M. Larsson, E. Alm, S. S. Yekta, B. H. Svensson, S. J. Sørensen, and A. Karlsson. 2013. “454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters.” FEMS Microbiol. Ecol. 85 (3): 612–626. https://doi.org/10.1111/1574-6941.12148.
Zamanzadeh, M., L. H. Hagen, K. Svensson, R. Linjordet, and S. J. Horn. 2016. “Anaerobic digestion of food waste—Effect of recirculation and temperature on performance and microbiology.” Water Res. 96 (Jun): 246–254. https://doi.org/10.1016/j.watres.2016.03.058.
Zhang, L., K.-C. Loh, J. W. Lim, and J. Zhang. 2019. “Bioinformatics analysis of metagenomics data of biogas-producing microbial communities in anaerobic digesters: A review.” Renewable Sustainable Energy Rev. 100 (Feb): 110–126. https://doi.org/10.1016/j.rser.2018.10.021.
Zheng, D., and L. Raskin. 2000. “Quantification of Methanosaeta species in anaerobic bioreactors using genus-and species-specific hybridization probes.” Microbiol. Ecol. 39 (3): 246–262. https://doi.org/10.1007/s002480000003.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 147Issue 10October 2021

History

Received: Jan 6, 2021
Accepted: Apr 26, 2021
Published online: Jul 20, 2021
Published in print: Oct 1, 2021
Discussion open until: Dec 20, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Postdoctoral Research Associate, Dept. of Civil, Environmental, and Geo- Engineering, Univ. of Minnesota Twin Cities, 500 Pillsbury Dr. S.E., Minneapolis, MN 55455. ORCID: https://orcid.org/0000-0002-6310-5323
Sebastian Behrens
Associate Professor, Dept. of Civil, Environmental, and Geo- Engineering & the Biotechnology Institute, Univ. of Minnesota Twin Cities, 500 Pillsbury Dr. S.E., Minneapolis, MN 55455.
Professor, Dept. of Civil, Environmental, and Geo- Engineering & the Biotechnology Institute, Univ. of Minnesota Twin Cities, 500 Pillsbury Dr. S.E., Minneapolis, MN 55455 (corresponding author). ORCID: https://orcid.org/0000-0002-5653-5309. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share