State-of-the-Art Reviews
Jul 22, 2021

Laundry Wastewater Treatment: Review and Life Cycle Assessment

Publication: Journal of Environmental Engineering
Volume 147, Issue 10

Abstract

Accommodation providers produce large amounts of wastewater in laundering processes (1225  L/kg of textile). The composition of this wastewater depends on the washing procedure. Between 2 and 100  mg/L methylene blue active substances (MBAS), between 1 and 30  mg/L total phosphorous, and up to 20,000  mg/L chemical oxygen demand (COD) have been reported. Many regions have regulated the concentration of surfactants and phosphorous that can be discharged into water bodies to a few milligrams per liter, due to the negative effects that these compounds can cause in the environment. Several techniques can be employed in laundry wastewater treatment, including coagulation, filtration, biological reactors, adsorption, or advanced oxidation processes. Frequently, a combination of the mentioned processes is needed to meet the desired water quality standards. Only a few studies have reported an economic assessment of the options employed for laundry wastewater reclamation. Lower costs have been reported for coagulation, biological reactors, and adsorption processes than for other treatments such as filtration techniques. Total treatment costs vary between 0.09/m3 (treatment with granular activated carbon) and 5/m3 (nanofiltration). Life cycle assessment (LCA) is important for decision-making when different alternatives can be applied. Few references include a LCA for laundry wastewater treatment. Electricity consumption has been reported as one of the main environmental hazards for laundry wastewater treatment: an equilibrium must be reached between energy consumption and the standards of treated water. Future works must lead with the full-scale application and long-term monitoring of general, cost-effective, simple, and environmentally friendly techniques for the treatment of industrial laundry wastewater.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

No data, models, or code were generated or used during the study.

References

Ahmad, J., and H. El-Dessouky. 2008. “Design of a modified low cost treatment system for the recycling and reuse of laundry waste water.” Resour. Conserv. Recycl. 52 (7): 973–978. https://doi.org/10.1016/j.resconrec.2008.03.001.
Ahmia, A. C., M. Idouhar, O. Arous, K. Sini, A. Ferradj, and A. Tazerouti. 2016. “Monitoring of anionic surfactants in a wastewater treatment plant of algiers western region by a simplified spectrophotometric method.” J. Surfactants Deter. 19 (6): 1305–1314. https://doi.org/10.1007/s11743-016-1884-x.
Ali, I., S. Afshinb, Y. Poureshgh, A. Azari, Y. Rashtbari, A. Feizizadeh, A. Hamzezadeh, and M. Fazlzadeh. 2020. “Green preparation of activated carbon from pomegranate peel coated with zero-valent iron nanoparticles (nZVI) and isotherm and kinetic studies of amoxicillin removal in water.” Environ. Sci. Pollut. Res. 27 (29): 36732–36743. https://doi.org/10.1007/s11356-020-09310-1.
Ali, I., O. M. L. Alharbi, Z. A. Alothman, and A. Alwarthan. 2018a. “Facile and eco-friendly synthesis of functionalized iron nanoparticles for cyanazine removal in water.” Colloids Surf. B 171 (Nov): 606–613. https://doi.org/10.1016/j.colsurfb.2018.07.071.
Ali, I., O. M. L. Alharbi, Z. A. ALOthman, A. M. Al-Mohaimeed, and A. Alwarthan. 2019. “Modeling of fenuron pesticide adsorption on CNTs for mechanistic insight and removal in water.” Environ. Res. 170 (8): 389–397. https://doi.org/10.1016/j.envres.2018.12.066.
Ali, I., O. M. L. Alharbi, A. Tkachev, E. Galunin, A. Burakov, and V. A. Grachev. 2018b. “Water treatment by new-generation graphene materials: Hope for bright future.” Environ. Sci. Pollut. Res. 25 (8): 7315–7329. https://doi.org/10.1007/s11356-018-1315-9.
Ali, I., T. Kon’kova, V. Kasianov, A. Rysev, S. Panglisch, X. Y. Mbianda, M. A. Habila, and N. AlMasoud. 2021. “Preparation and characterization of nano-structured modified montmorillonite for dioxidine antibacterial drug removal in water.” J. Mol. Liq. 331 (7): 115770. https://doi.org/10.1016/j.molliq.2021.115770.
Ashfaq, M. Y., and H. Qiblawey. 2018. “Laundry wastewater treatment using ultrafiltration under different operating conditions.” In Proc., AIP Conf. Proc. 2022. College Park, MD: American Institute of Physics. https://doi.org/10.1063/1.5060682.
ASTM. 2003a. American society for testing and materials. ASTM D2035. West Conshohocken, PA: ASTM.
ASTM. 2003b. Standard practice for coagulation-flocculation jar test of water, 1–4. West Conshohocken, PA: ASTM.
Awual, M. R. 2015. “A novel facial composite adsorbent for enhanced copper(II) detection and removal from wastewater.” Chem. Eng. J. 266 (Apr): 368–375. https://doi.org/10.1016/j.cej.2014.12.094.
Awual, M. R. 2017. “New type mesoporous conjugate material for selective optical copper(II) ions monitoring &; removal from polluted waters.” Chem. Eng. J. 307 (Jan): 85–94. https://doi.org/10.1016/j.cej.2016.07.110.
Awual, M. R. 2019. “Efficient phosphate removal from water for controlling eutrophication using novel composite adsorbent.” J. Cleaner Prod. 228 (Aug): 1311–1319. https://doi.org/10.1016/j.jclepro.2019.04.325.
Barambu, N. U., D. Peter, M. H. M. Yusoff, M. R. Bilad, N. Shamsuddin, L. Marbelia, N. A. H. Nordin, and J. Jaafar. 2020. “Detergent and water recovery from laundry wastewater using tilted panel membrane filtration system.” Membranes 10 (10): 260. https://doi.org/10.3390/membranes10100260.
Basheer, A. A. 2018a. “Chemical chiral pollution: Impact on the society and science and need of the regulations in the 21st century.” Chirality 30 (4): 402–406. https://doi.org/10.1002/chir.22808.
Basheer, A. A. 2018b. “New generation nano-adsorbents for the removal of emerging contaminants in water.” J. Mol. Liq. 261 (1): 583–593. https://doi.org/10.1016/j.molliq.2018.04.021.
Bashiri, H., and M. Rafiee. 2016. “Kinetic Monte Carlo simulation of 2,4,6-thrichloro phenol ozonation in the presence of ZnO nanocatalyst kinetic Monte Carlo simulation of 2,4,6-thrichloro phenol ozonation.” J. Saudi Chem. Soc. 20 (4): 474–479. https://doi.org/10.1016/j.jscs.2014.11.001.
Belén, A., E. García, K. Szyma, and S. Mozia. 2020. “Treatment of laundry wastewater by solar photo-Fenton process at pilot plant scale.” Environ. Sci. Pollut. Res. 28 (7): 8576–8584. https://doi.org/10.1007/s11356-020-11151-x.
Bering, S., J. Mazur, K. Tarnowski, M. Janus, S. Mozia, and A. W. Morawski. 2017. “The use of moving bed bio-reactor to laundry wastewater treatment.” E3S Web Conf. 22: 1–9. https://doi.org/10.1051/e3sconf/20172200015.
Bering, S., J. Mazur, K. Tarnowski, M. Janus, S. Mozia, and A. W. Morawski. 2018. “The application of moving bed bio-reactor (MBBR) in commercial laundry wastewater treatment.” Sci. Total Environ. 627 (Jun): 1638–1643. https://doi.org/10.1016/j.scitotenv.2018.02.029.
Bianchetti, G. O., C. L. Devlin, and K. R. Seddon. 2015. “Bleaching systems in domestic laundry detergents: A review.” RSC Adv. 5 (80): 65365–65384. https://doi.org/10.1039/C5RA05328E.
Bilad, M. R., N. I. Mat Nawi, D. D. Subramaniam, N. Shamsuddin, A. L. Khan, J. Jaafar, and A. B. D. Nandiyanto. 2020. “Low-pressure submerged membrane filtration for potential reuse of detergent and water from laundry wastewater.” J. Water Process Eng. 36 (Aug): 101264. https://doi.org/10.1016/j.jwpe.2020.101264.
Blasco, J., M. Hampel, and I. Moreno-Garrido. 2003. “Chapter 7: Toxicity of surfactants.” In Analysis and fate of surfactants and the aquatic environment, 827–925. Amsterdam, Netherlands: Elsevier.
Boyjoo, Y., V. K. Pareek, and M. Ang. 2013. “A review of greywater characteristics and treatment processes.” Water Sci. Technol. 67 (7): 1403–1424. https://doi.org/10.2166/wst.2013.675.
BPC (Biocidal Products Committee). 2016. Peracetic acid generated from tetraacetylethylenediamine and sodium percarbonate. Helsinki, Finland: BPC.
Braga, J. K., F. Motteran, E. L. Silva, and M. B. A. Varesche. 2015. “Evaluation of bacterial community from anaerobic fluidized bed reactor for the removal of linear alkylbenzene sulfonate from laundry wastewater by 454-pyrosequence.” Ecol. Eng. 82 (8): 231–240. https://doi.org/10.1016/j.ecoleng.2015.04.083.
Braga, J. K., and M. B. A. Varesche. 2014. “Commercial laundry water characterisation.” Am. J. Anal. Chemis. 5 (1): 8–16. https://doi.org/10.4236/ajac.2014.51002.
Carraro, E., S. Bonetta, C. Bertino, E. Lorenzi, S. Bonetta, and G. Gilli. 2016. “Hospital effluents management: Chemical, physical, microbiological risks and legislation in different countries.” J. Environ. Manage. 168 (Mar): 185–199. https://doi.org/10.1016/j.jenvman.2015.11.021.
Carrondo, M. J. T., R. Perry, and J. N. Lester. 1980. “Type A zeolite in the activated sludge processes—I: Treatment parameters.” J. Water Pollut. Control Feder. 52 (11): 2796–2806.
Chen, Y., Y. Xie, J. Yang, H. Cao, and Y. Zhang. 2014. “Reaction mechanism and metal ion transformation in photocatalytic ozonation of phenol and oxalic acid with Ag+/TiO2.” J. Environ. Sci. 26 (3): 662–672. https://doi.org/10.1016/S1001-0742(13)60445-3.
Ciabatti, I., F. Cesaro, L. Faralli, E. Fatarella, and F. Tognotti. 2009. “Demonstration of a treatment system for purification and reuse of laundry wastewater.” Desalination 245 (1–3): 451–459. https://doi.org/10.1016/j.desal.2009.02.008.
CINET Professional Textile Care. 2020. Industrial washing and drying. Ophemert, GA: International Comitte of Textile Care.
Collivignarelli, M. C., M. Carnevale Miino, M. Baldi, S. Manzi, A. Abbà, and G. Bertanza. 2019. “Removal of non-ionic and anionic surfactants from real laundry wastewater by means of a full-scale treatment system.” Process Saf. Environ. Protect. 132 (6): 105–115. https://doi.org/10.1016/j.psep.2019.10.022.
Corominas, L., D. M. Byrne, J. S. Guest, A. Hospido, P. Roux, A. Shaw, and M. D. Short. 2020. “The application of life cycle assessment (LCA) to wastewater treatment: A best practice guide and critical review.” Water Res. 184 (Jun): 116058. https://doi.org/10.1016/j.watres.2020.116058.
Cullum, D. C. 1994. Surfactant types; classification, identification, separation, 17–41. Berlin: Springer.
Delforno, T. P., D. R. B. Belgini, K. J. Hidalgo, V. B. Centurion, G. V. Lacerda-Júnior, I. C. S. Duarte, M. B. A. Varesche, and V. M. Oliveira. 2020. “Anaerobic reactor applied to laundry wastewater treatment: Unveiling the microbial community by gene and genome-centric approaches.” Int. Biodeter. Biodegrad. 149 (Jan): 104916. https://doi.org/10.1016/j.ibiod.2020.104916.
Delforno, T. P., G. V. Lacerda, I. N. Sierra-Garcia, D. Y. Okada, T. Z. Macedo, M. B. A. Varesche, and V. M. Oliveira. 2017. “Metagenomic analysis of the microbiome in three different bioreactor configurations applied to commercial laundry wastewater treatment.” Sci. Total Environ. 587–588 (Feb): 389–398. https://doi.org/10.1016/j.scitotenv.2017.02.170.
de Oliveira Schwaickhardt, R., Ê. L. Machado, and C. A. Lutterbeck. 2017. “Combined use of VUV and UVC photoreactors for the treatment of hospital laundry wastewaters: Reduction of load parameters, detoxification and life cycle assessment of different configurations.” Sci. Total Environ. 590–591 (Jul): 233–241. https://doi.org/10.1016/j.scitotenv.2017.02.218.
Deressa, S., H. Endale, D. Dadi, and S. A. Kitte. 2019. “Removal of anionic surfactant from residential laundry wastewater using jackfruit (Artocarpus Heterophyllus) seeds.” Adv. Environ. Technol. 5 (1): 47–53. https://doi.org/10.22104/aet.2020.3841.1189.
Dimoglo, A., P. Sevim-Elibol, K. Gökmen, and H. Erdoğan. 2019. “Electrocoagulation/electroflotation as a combined process for the laundry wastewater purification and reuse.” J. Water Process Eng. 31 (Oct): 100877. https://doi.org/10.1016/j.jwpe.2019.100877.
Dotto, J., M. R. Fagundes-Klen, M. T. Veit, S. M. Palácio, and R. Bergamasco. 2019. “Performance of different coagulants in the coagulation/flocculation process of textile wastewater.” J. Cleaner Prod. 208 (Jan): 656–665. https://doi.org/10.1016/j.jclepro.2018.10.112.
Ehsan, A., and Y. Zahira. 2012. “Electrocoagulation for treatment of industrial effluents and hydrogen production.” Accessed November 6, 2020. https://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics.
European Parliament and the Council of the European Union. 2004. “Regulation (EC) No 648/2004 of the European parliament and of the council on detergents.” Official J. 15 (L104): 1–35.
European Parliament and the Council of the European Union. 2008. Regulation (EC) 1272/2008 of the European parliament and of the council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. Lisbon, Portugal: European Parliament and the Council of the European Union.
FAO (Food and Agriculture Organization). 1985. Guidelines: Land evaluation for irrigated agriculture. FAO Soils Bulletin 55. Rome: FAO.
Fazio, S., F. Biganzioli, V. De Laurentiis, L. Zampori, S. Sala, and E. Diaconu. 2018. Supporting information to the characterisation factors of recommended EF life cycle impact assessment methods. Luxembourg, Luxembourg: Publications Office of the EU. https://doi.org/10.2760/002447.
Fenton, H. J. H. 1894. “LXXIII.—Oxidation of tartaric acid in presence of iron.” J. Chem. Soc. Trans. 65 (10): 899–910. https://doi.org/10.1039/CT8946500899.
Fromme, H., T. Otto, and K. Pilz. 2001. “Polycyclic musk fragrances in the aquatic environment.” In Vol. 773 of Proc., ACS Symp. Series, 203–222. Washington, DC: American Chemical Society.
Furtado, A. O., I. V. Almeida, A. C. C. Almeida, J. P. Zotesso, C. R. G. Tavares, and V. E. P. Vicentini. 2020. “Evaluation of hospital laundry effluents treated by advanced oxidation processes and their cytotoxic effects on Allium cepa L.” Environ. Monit. Assess. 192 (360): 1–8. https://doi.org/10.1007/s10661-020-08328-9.
Gallego-Schmid, A., and R. R. Z. Tarpani. 2019. “Life cycle assessment of wastewater treatment in developing countries: A review.” Water Res. 153 (Apr): 63–79. https://doi.org/10.1016/j.watres.2019.01.010.
Ge, J., J. Qu, P. Lei, and H. Liu. 2004. “New bipolar electrocoagulation-electroflotation process for the treatment of laundry wastewater.” Sep. Purif. Technol. 36 (1): 33–39. https://doi.org/10.1016/S1383-5866(03)00150-3.
Ghalami Choobar, B., M. A. Alaei Shahmirzadi, A. Kargari, and M. Manouchehri. 2019. “Fouling mechanism identification and analysis in microfiltration of laundry wastewater.” J. Environ. Chem. Eng. 7 (2): 103030. https://doi.org/10.1016/j.jece.2019.103030.
Gilbert, P. A., and A. L. DeJong. 1977. “The use of phosphate in detergents and possible replacements for phosphate.” In Proc., Ciba Foundation Symp., 253–268. New York: Wiley. https://doi.org/10.1002/9780470720387.ch14.
Gobierno de Canarias. 1994. “Decreto 174/1994, de 29 de julio, por el que se aprueba el Reglamento de Control de Vertidos para la Protección del Dominio Público Hidráulico.” Boletín Oficial De Canarias 104: 6123–6140.
Gobierno de Canarias. 2019. “Decreto 2/2019, de 21 de enero, por el que aprueba definitivamente el Plan Hidrológico Insular de la Demarcación Hidrográfica de Gran Canaria.” Boletín Oficial De Canarias 17 (8): 3504–3608.
Godayol, A., E. Besalú, E. Anticó, and J. M. Sanchez. 2015. “Monitoring of sixteen fragrance allergens and two polycyclic musks in wastewater treatment plants by solid phase microextraction coupled to gas chromatography.” Chemosphere 119 (Jan): 363–370. https://doi.org/10.1016/j.chemosphere.2014.06.072.
HERA. 2002. “Tetraacetylethylenediamine (TAED).” Accessed April 2, 2021. https://www.heraproject.com/files/2-f-04-herataedfullwebwd.pdf.
Hoinkis, J., and V. Panten. 2008. “Wastewater recycling in laundries-From pilot to large-scale plant.” Chem. Eng. Process. Process Int. 47 (7): 1159–1164. https://doi.org/10.1016/j.cep.2007.12.010.
Holt, P. K., G. W. Barton, and C. A. Mitchell. 2005. “The future for electrocoagulation as a localised water treatment technology.” Chemosphere 59 (3): 355–367. https://doi.org/10.1016/j.chemosphere.2004.10.023.
Huang, C. H., S. Y. Shen, C. W. Chen, C. Dong, M. Kumar, B. Dakshinamoorthy, and J. H. Chang. 2020. “Effect of chloride ions on electro-coagulation to treat industrial wastewater containing Cu and Ni.” Sustainability 12 (18): 7693. https://doi.org/10.3390/su12187693.
Ikehata, K., and M. G. El-Din. 2004. “Degradation of recalcitrant surfactants in wastewater by ozonation and advanced oxidation processes: A review.” Ozone Sci. Eng. 26 (4): 327–343. https://doi.org/10.1080/01919510490482160.
ISO. 2006a. Environmental management—Life cycle assessment—Principles and framework. London: ISO.
ISO. 2006b. Environmental management—Life cycle assessment—Requirements and guidelines. London: ISO.
Janpoor, F., A. Torabian, and V. Khatibikamal. 2011. “Treatment of laundry waste-water by electrocoagulation.” J. Chem. Technol. Biotechnol. 86 (8): 1113–1120. https://doi.org/10.1002/jctb.2625.
Jardak, K., P. Drogui, and R. Daghrir. 2016. “Surfactants in aquatic and terrestrial environment: Occurrence, behavior, and treatment processes.” Environ. Sci. Pollut. Res. 23 (4): 3195–3216. https://doi.org/10.1007/s11356-015-5803-x.
Jegannathan, K. R., and P. H. Nielsen. 2013. “Environmental assessment of enzyme use in industrial production—A literature review.” J. Cleaner Prod. 42 (Mar): 228–240. https://doi.org/10.1016/j.jclepro.2012.11.005.
Jørgensen, K. R., A. Villanueva, and H. Wenzel. 2004. “Use of life cycle assessment as decision-support tool for water reuse and handling of residues at a Danish industrial laundry” Waste Manage. Res. 22 (5): 334–345. https://doi.org/10.1177/0734242X04046489.
Katam, K., and D. Bhattacharyya. 2017. “Biodegradation of laundry wastewater under aerobic and anaerobic conditions: A kinetic evaluation.” Water Environ. Res. 89 (12): 2071–2077. https://doi.org/10.2175/106143017X14902968254638.
Kern, D. I., R. Schwaickhardt, G. Mohr, E. A. Lobo, L. T. Kist, and Ê. L. Machado. 2013. “Toxicity and genotoxicity of hospital laundry wastewaters treated with photocatalytic ozonation.” Sci. Total Environ. 443 (11): 566–572. https://doi.org/10.1016/j.scitotenv.2012.11.023.
Kerslake, A. J. E., H. C. Schmitt, N. A. Thomas, B. J. E. Kerslake, H. C. Schmitt, and N. A. Thomas. 1946. “Iron salts as coagulants.” Pure Appl. Chemis. 38 (10): 1161–1169. https://doi.org/10.1351/pac200173122017.
Khosravanipour Mostafazadeh, A., A. T. Benguit, A. Carabin, P. Drogui, and E. Brien. 2019. “Development of combined membrane filtration, electrochemical technologies, and adsorption processes for treatment and reuse of laundry wastewater and removal of nonylphenol ethoxylates as surfactants.” J. Water Process Eng. 28 (Apr): 277–292. https://doi.org/10.1016/j.jwpe.2019.02.014.
Kim, H. C., X. Shang, J. H. Huang, and B. A. Dempsey. 2014. “Treating laundry waste water: Cationic polymers for removal of contaminants and decreased fouling in microfiltration.” J. Membr. Sci. 456 (Apr): 167–174. https://doi.org/10.1016/j.memsci.2014.01.028.
Kist, L. T., C. Albrech, and Ê. L. Machado. 2008. “Hospital laundry wastewater disinfection with catalytic photoozonation.” Clean Soil Air Water 36 (9): 775–780. https://doi.org/10.1002/clen.200700175.
Lariyah, M. S., H. A. Mohiyaden, G. Hayder, A. Hussein, H. Basri, A. F. Sabri, and M. N. Noh. 2016. “Application of moving bed biofilm reactor (MBBR) and integrated fixed activated sludge (IFAS) for biological river water purification system: A short review.” Earth Environ. Sci. 32 (1): 012005. https://doi.org/10.1088/1755-1315/32/1/012005.
Legrini, O., E. Oliveros, and A. M. Braun. 1993. “Photochemical processes for water treatment” Chem. Rev. 93 (2): 671–698. https://doi.org/10.1021/cr00018a003.
Li, F., K. Wichmann, and R. Otterpohl. 2009. “Review of the technological approaches for grey water treatment and reuses” Sci. Total Environ. 407 (11): 3439–3449. https://doi.org/10.1016/j.scitotenv.2009.02.004.
Lutterbeck, C. A., G. S. Colares, N. Dell’Osbel, F. P. da Silva, L. T. Kist, and Ê. L. Machado. 2020a. “Hospital laundry wastewaters: A review on treatment alternatives, life cycle assessment and prognosis scenarios.” J. Cleaner Prod. 273 (2): 122851. https://doi.org/10.1016/j.jclepro.2020.122851.
Lutterbeck, C. A., Ê. L. Machado, A. Sanchez-Barrios, E. O. Silveira, D. Layton, A. Rieger, and E. A. Lobo. 2020b. “Toxicity evaluation of hospital laundry wastewaters treated by microbial fuel cells and constructed wetlands.” Sci. Total Environ. 729 (11): 138816. https://doi.org/10.1016/j.scitotenv.2020.138816.
Madsen, T., H. B. Boyd, D. Nylén, A. R. Petersen, G. I. Petersen, and F. Simonsen. 2001. Environmental and health assessment of substances in household detergents and cosmetic detergent products, environmental project. Copenhagen, Denmark: Danish EPA.
Manouchehri, M., and A. Kargari. 2017. “Water recovery from laundry wastewater by the cross flow microfiltration process: A strategy for water recycling in residential buildings.” J. Cleaner Prod. 168 (8): 227–238. https://doi.org/10.1016/j.jclepro.2017.08.211.
M’Arimi, M. M., C. A. Mecha, A. K. Kiprop, and R. Ramkat. 2020. “Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review.” Renewable Sustainable Energy Rev. 121 (4): 109669. https://doi.org/10.1016/j.rser.2019.109669.
Martínez-Huitle, C. A., and E. Brillas. 2009. “Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review.” Appl. Catal. B 87 (3–4): 105–145. https://doi.org/10.1016/j.apcatb.2008.09.017.
Matsuo, T., T. Nishi, M. Matsuda, and T. Izumida. 1997. “Compatibility of the ultraviolet light-ozone system for laundry waste water treatment in nuclear power plants.” Nucl. Technol. 119 (2): 149–157. https://doi.org/10.13182/NT97-A35383.
Milne, N. J. 1998. “Oxygen bleaching systems in domestic laundry.” J. Surfactants Deterg. 1 (2): 253–261. https://doi.org/10.1007/s11743-998-0029-z.
Mohtashami, R., and J. Q. Shang. 2019. “Electroflotation for treatment of industrial wastewaters: A focused review.” Environ. Process. 6 (2): 325–353. https://doi.org/10.1007/s40710-019-00348-z.
Mousavi, S. A., and F. Khodadoost. 2019. “Effects of detergents on natural ecosystems and wastewater treatment processes: A review.” Environ. Sci. Pollut. Res. 26 (8): 26439–26448. https://doi.org/10.1007/s11356-019-05802-x.
Mozia, S., M. Janus, S. Bering, K. Tarnowski, J. Mazur, K. Szymański, and A. W. Morawski. 2020. “Hybrid system coupling moving bed bioreactor with UV/O3 oxidation and membrane separation units for treatment of industrial laundry wastewater.” Materials 13 (Apr): 2648. https://doi.org/10.3390/ma13112648.
Mozia, S., M. Janus, P. Brożek, S. Bering, K. Tarnowski, J. Mazur, and A. W. Morawski. 2016. “A system coupling hybrid biological method with UV/O3 oxidation and membrane separation for treatment and reuse of industrial laundry wastewater.” Environ. Sci. Pollut. Res. 23 (19): 19145–19155. https://doi.org/10.1007/s11356-016-7111-5.
Munoz, M., P. Garcia-Muñoz, G. Pliego, Z. M. De Pedro, J. A. Zazo, J. A. Casas, and J. J. Rodriguez. 2016. “Application of intensified Fenton oxidation to the treatment of hospital wastewater: Kinetics, ecotoxicity and disinfection.” J. Environ. Chem. Eng. 4 (Apr): 4107–4112. https://doi.org/10.1016/j.jece.2016.09.019.
Nascimento, C. O. C., M. T. Veit, S. M. Palácio, G. C. Gonçalves, and M. R. Fagundes-Klen. 2019. “Combined application of coagulation/flocculation/sedimentation and membrane separation for the treatment of laundry wastewater.” Int. J. Chem. Eng. 2019 (1): 1–13. https://doi.org/10.1155/2019/8324710.
Nicolaidis, C., and I. Vyrides. 2014. “Closing the water cycle for industrial laundries: An operational performance and techno-economic evaluation of a full-scale membrane bioreactor system.” Resour. Conserv. Recycl. 92 (11): 128–135. https://doi.org/10.1016/j.resconrec.2014.09.001.
Patil, V. V., P. R. Gogate, A. P. Bhat, and P. K. Ghosh. 2020. “Treatment of laundry wastewater containing residual surfactants using combined approaches based on ozone, catalyst and cavitation.” Sep. Purification Technol. 239 (Dec): 116594. https://doi.org/10.1016/j.seppur.2020.116594.
Pinto, U., and B. L. Maheshwari. 2015. “Sustainable graywater reuse for residential landscape irrigation—A critical review.” Chin. J. Popul. Resour. Environ. 13 (3): 250–264. https://doi.org/10.1080/10042857.2015.1059790.
Poiger, T., J. A. Field, T. M. Field, H. Siegrist, and W. Giger. 1998. “Behavior of fluorescent whitening agents during sewage treatment.” Water Res. 32 (6): 1939–1947. https://doi.org/10.1016/S0043-1354(97)00408-9.
Polak, D., M. Szwast, W. Fabianowski, and M. Rosiński. 2019. “Ceramic membranes modified by carbon used for laundry wastewater treatment.” Chem. Eng. Trans. 74 (May): 931–936. https://doi.org/10.3303/CET1974156.
Recanati, F., and A. Ciroth. 2019. Product environmental footprints. Berlin: GreenDelta GmbH.
Rekhate, C. V., and J. K. Srivastava. 2020. “Recent advances in ozone-based advanced oxidation processes for treatment of wastewater—A review.” Chem. Eng. J. Adv. 3 (Sep): 100031. https://doi.org/10.1016/j.ceja.2020.100031.
Rodríguez, E. M., G. Fernández, P. M. Alvarez, and F. J. Beltrán. 2012. “TiO2 and Fe (III) photocatalytic ozonation processes of a mixture of emergent contaminants of water.” Water Res. 46 (1): 152–166. https://doi.org/10.1016/j.watres.2011.10.038.
Sandbacka, M., I. Christianson, and B. Isomaa. 2000. “The acute toxicity of surfactants on fish cells, Daphnia magna and fish—A comparative study.” Toxicol. in Vitro 14 (1): 61–68. https://doi.org/10.1016/S0887-2333(99)00083-1.
Schwuger, M. J., and M. Liphard. 1989. “Fundamentals of Phosphate Substitution in Detergents By Zeolites: Cobuilders and optical brighteners.” In Zeolites as catalysts, sorbents and detergent builders, 673–690. Amsterdam, Netherlands: Elsevier.
Shang, X. 2012. Membrane filtration and polymer coagulation for water reuse in laundry wastewater treatment: From bench-scale to full-scale operation. State College, PA: Pennsylvania State Univ.
Shang, X., H. C. Kim, J. H. Huang, and B. A. Dempsey. 2015. “Coagulation strategies to decrease fouling and increase critical flux and contaminant removal in microfiltration of laundry wastewater.” Sep. Purif. Technol. 147 (Jun): 44–50. https://doi.org/10.1016/j.seppur.2015.04.005.
Siyal, A. A., M. R. Shamsuddin, A. Low, and N. E. Rabat. 2020. “A review on recent developments in the adsorption of surfactants from wastewater.” J. Environ. Manage. 254 (Jan): 109797. https://doi.org/10.1016/j.jenvman.2019.109797.
Sophia, A., and E. C. Lima. 2018. “Removal of emerging contaminants from the environment by adsorption.” Ecotoxicol. Environ. Saf. 150 (Apr): 1–17. https://doi.org/10.1016/j.ecoenv.2017.12.026.
Šostar-Turk, S., I. Petrinić, and M. Simonič. 2005. “Laundry wastewater treatment using coagulation and membrane filtration.” Resour. Conserv. Recycl. 44 (2): 185–196. https://doi.org/10.1016/j.resconrec.2004.11.002.
St. Laurent, J. B., F. de Buzzaccarini, K. De Clerck, H. Demeyere, R. Labeque, R. Lodewick, and L. van Langenhove. 2007. “B.1.I—Laundry cleaning of textiles.” In Handbook for cleaning/decontamination of surfaces, 57–102. Amsterdam, Netherlands, Elsevier.
Styles, D., H. Schönberger, and J. L. G. Martos. 2013. Best environmental management practice in the tourism sector. Sevilla, Spain: European Comission.
Sumisha, A., G. Arthanareeswaran, Y. Lukka Thuyavan, A. F. Ismail, and S. Chakraborty. 2015. “Treatment of laundry wastewater using polyethersulfone/polyvinylpyrollidone ultrafiltration membranes.” Ecotoxicol. Environ. Saf. 121 (Nov): 174–179. https://doi.org/10.1016/j.ecoenv.2015.04.004.
Terechova, E. L., G. Zhang, J. Chen, N. A. Sosnina, and F. Yang. 2014. “Combined chemical coagulation-flocculation/ultraviolet photolysis treatment for anionic surfactants in laundry wastewater.” J. Environ. Chem. Eng. 2 (4): 2111–2119. https://doi.org/10.1016/j.jece.2014.09.011.
Tony, M. A., H. L. Parker, and J. H. Clark. 2019. “Evaluating Algibon adsorbent and adsorption kinetics for launderette water treatment: Towards sustainable water management.” Water Environ. J. 33 (3): 401–408. https://doi.org/10.1111/wej.12412.
Tripathi, S. K., R. Tyagi, and B. K. Nandi. 2013. “Removal of residual surfactants from laundry wastewater: A review.” J. Dispersion Sci. Technol. 34 (11): 1526–1534. https://doi.org/10.1080/01932691.2012.752328.
Turkay, O., S. Barişçi, and M. Sillanpää. 2017. “E-peroxone process for the treatment of laundry wastewater: A case study.” J. Environ. Chem. Eng. 5 (May): 4282–4290. https://doi.org/10.1016/j.jece.2017.08.012.
Van Eck, N. J., and L. Waltman. 2007. VOS: A new method for visualizing similarities between objects. Berlin: Springer.
Vargas, A. M. M., and T. A. M. Lopes. 2020. “Activated carbons from flamboyant pods: New types of adsorbents and application to laundry effluents.” J. Water Process Eng. 36 (Aug): 101277. https://doi.org/10.1016/j.jwpe.2020.101277.
Veli, S., A. Arslan, Ç. Gülümser, E. Topkaya, H. Kurtkulak, Ş. Zeybek, A. Dimoglo, and M. Işgören. 2019. “Advanced treatment of pre-treated commercial laundry wastewater by adsorption process: Experimental design and cost evaluation.” J. Ecol. Eng. 20 (10): 165–171. https://doi.org/10.12911/22998993/113136.
Vilve, M., A. Hirvonen, and M. Sillanpaa. 2007. “Ozone-based advanced oxidation processes in nuclear laundry water treatment.” Environ. Technol. 28 (9): 961–968. https://doi.org/10.1080/09593332808618863.
Vilve, M., A. Hirvonen, and M. Sillanpää. 2009. “Effects of reaction conditions on nuclear laundry water treatment in Fenton process.” J. Hazard. Mater. 164 (2–3): 1468–1473. https://doi.org/10.1016/j.jhazmat.2008.09.058.
Wang, C. T., W. L. Chou, and Y. M. Kuo. 2009. “Removal of COD from laundry wastewater by electrocoagulation/electroflotation.” J. Hazard. Mater. 164 (1): 81–86. https://doi.org/10.1016/j.jhazmat.2008.07.122.
Wang, D., F. Guo, Y. Wu, Z. Li, and G. Wu. 2018. “Technical, economic and environmental assessment of coagulation/filtration tertiary treatment processes in full-scale wastewater treatment plants.” J. Cleaner Prod. 170 (8): 1185–1194. https://doi.org/10.1016/j.jclepro.2017.09.231.
Wang, S., C. Liu, and Q. Li. 2011. “Fouling of microfiltration membranes by organic polymer coagulants and flocculants: Controlling factors and mechanisms.” Water Res. 45 (1): 357–365. https://doi.org/10.1016/j.watres.2010.08.009.
Zotesso, J. P., E. S. Cossich, V. Janeiro, and C. R. G. Tavares. 2017. “Treatment of hospital laundry wastewater by UV/H2O2 process.” Environ. Sci. Pollut. Res. 24 (7): 6278–6287. https://doi.org/10.1007/s11356-016-6860-5.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 147Issue 10October 2021

History

Published online: Jul 22, 2021
Published in print: Oct 1, 2021
Discussion open until: Dec 22, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Dunia E. Santiago [email protected]
Part Time Instructor, Grupo Fotocatálisis y Espectroscopía para Aplicaciones Medioambientales, Instituto de Estudios Ambientales y Recursos Naturales -Universidad de Las Palmas de Gran Canaria, Edificio del Parque Científico Tecnológico de la Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas, Spain (corresponding author). Email: [email protected]
M. J. Hernández Rodríguez, Ph.D. [email protected]
Grupo Fotocatálisis y Espectroscopía para Aplicaciones Medioambientales, Instituto de Estudios Ambientales y Recursos Naturales -Universidad de Las Palmas de Gran Canaria, Edificio del Parque Científico Tecnológico de la Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas, Spain. Email: [email protected]
E. Pulido-Melián [email protected]
Professor, Grupo Fotocatálisis y Espectroscopía para Aplicaciones Medioambientales, Instituto de Estudios Ambientales y Recursos Naturales -Universidad de Las Palmas de Gran Canaria, Edificio del Parque Científico Tecnológico de la Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas, Spain. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Treatment of laundry wastewater by different processes: Optimization and life cycle assessment, Journal of Environmental Chemical Engineering, 10.1016/j.jece.2023.109302, 11, 2, (109302), (2023).
  • The Role of Life Cycle Assessment in Analyzing Circular Economy Strategies in the Clothing Sector: A Review, Progress on Life Cycle Assessment in Textiles and Clothing, 10.1007/978-981-19-9634-4_4, (83-118), (2023).
  • Advanced Treatment of Laundry Wastewater by Electro-Hybrid Ozonation–Coagulation Process: Surfactant and Microplastic Removal and Mechanism, Water, 10.3390/w14244138, 14, 24, (4138), (2022).
  • Ultra-Low-Pressure Membrane Filtration for Simultaneous Recovery of Detergent and Water from Laundry Wastewater, Membranes, 10.3390/membranes12060591, 12, 6, (591), (2022).
  • Advances in treatment of coking wastewater – a state of art review, Water Science and Technology, 10.2166/wst.2021.497, 85, 1, (449-473), (2021).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share