Technical Papers
May 14, 2021

Representation of Near-Wall Particle Fate in a Eulerian–Lagrangian Approach for Clarifier Unit Operations

Publication: Journal of Environmental Engineering
Volume 147, Issue 7

Abstract

Eulerian–Lagrangian methods are common for computational fluid dynamics (CFD) modeling of particle fate. Near-wall turbulence flow profiles are frequently modeled with wall function (WF) for computational efficiency and stability. However, WF does not provide the viscous and buffer sublayers solution for Lagrangian particle tracking (LPT). This study examines Reynolds-averaged Navier-Stokes (RANS)-LPT model combinations with near-wall models (two-layer, low-Reynolds number, WF), common LPT boundary conditions (trap, reflect), near-wall grids resolution (Δy+), and LPT solver configurations. Near-wall LPT in an open channel clarifier illuminates embedded numerical errors/artifacts generated by widely-used RANS-WF-LPT model combinations as benchmarked to direct numerical simulations (DNS). Near-wall LPT can be subject to grid resolution irrespective of particle-boundary interactions and LPT boundary conditions applied. Clarifier simulations illustrate LPT solver configurations influence particulate matter (PM) separation. RANS-LPT solutions are a function of particle diameter, maximum particle integration steps, and to a lesser degree on tracked particle number. Low-Reynolds number and two-layer models improve per particle size separation predictions compared to the WF model by up to 50% for 25–100 μm particles based on physical model benchmarking.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This research (P0089833) was supported by United States Geological Survey funding through the Water Resources Research Institute in ESSIE at the University of Florida.

References

Adamsson, A., V. Stovin, and L. Bergdahl. 2003. “Bed shear stress boundary condition for storage tank sedimentation.” J. Environ. Eng. 129 (7): 651–658. https://doi.org/10.1061/(ASCE)0733-9372(2003)129:7(651).
Balachandar, S., and J. K. Eaton. 2010. “Turbulent dispersed multiphase flow.” Annu. Rev. Fluid Mech. 42 (6): 111–133. https://doi.org/10.1146/annurev.fluid.010908.165243.
Burbano, M., B. McConnell, C. Knatz, D. Bisson, and B. Tarbuck. 2012. “Improving grit removal through CFD analysis.” Proc. Water Environ. Fed. 2009 (17): 794–806. https://doi.org/10.2175/193864709793955942.
Cataño-Lopera, Y. A., T. E. Tokyay, J. E. Martin, A. R. Schmidt, R. Lanyon, K. Fitzpatrick, C. F. Scalise, and M. H. García. 2014. “Modeling of a transient event in the tunnel and reservoir plan system in Chicago, Illinois.” J. Hydraul. Eng. 140 (9): 05014005. https://doi.org/10.1061/(asce)hy.1943-7900.0000888.
Chen, Z., S. Han, F. Y. Zhou, and K. Wang. 2013. “A CFD modeling approach for municipal sewer system design optimization to minimize emissions into receiving water body.” Water Resour. Manage. 27 (7): 2053–2069. https://doi.org/10.1007/s11269-013-0272-9.
Dickenson, J. A., and J. J. Sansalone. 2009. “Discrete phase model representation of particulate matter (PM) for simulating PM separation by hydrodynamic unit operations.” Environ. Sci. Technol. 43 (21): 8220–8226. https://doi.org/10.1021/es901527r.
Dickenson, J. A., and J. J. Sansalone. 2012. “Distribution and disinfection of bacterial loadings associated with particulate matter fractions transported in urban wet weather flows.” Water Res. 46 (20): 6704–6714. https://doi.org/10.1016/j.watres.2011.12.039.
Dufresne, M., J. Vazquez, A. Terfous, A. Ghenaim, and J. B. Poulet. 2009. “Experimental investigation and CFD modelling of flow, sedimentation, and solids separation in a combined sewer detention tank.” Comput. Fluids 38 (5): 1042–1049. https://doi.org/10.1016/j.compfluid.2008.01.011.
Durst, F., H. Kikura, I. Lekakis, J. Jovanović, and Q. Ye. 1996. “Wall shear stress determination from near-wall mean velocity data in turbulent pipe and channel flows.” Exp. Fluids 20 (6): 417–428. https://doi.org/10.1007/BF00189380.
Dutta, S., T. E. Tokyay, Y. A. Cataño-Lopera, S. Serafino, and M. H. Garcia. 2014. “Application of computational fluid dynamic modelling to improve flow and grit transport in Terrence J. O’Brien Water Reclamation Plant, Chicago, Illinois.” J. Hydraul. Res. 52 (6): 759–774. https://doi.org/10.1080/00221686.2014.949883.
Elghobashi, S. 1991. “Particle-laden turbulent flows: Direct simulation and closure models.” Appl. Sci. Res. 48 (3–4): 301–314. https://doi.org/10.1007/BF02008202.
Gao, H., and M. K. Stenstrom. 2020. “Development and applications in computational fluid dynamics modeling for secondary settling tanks over the last three decades: A review.” Water Environ. Res. 92 (6): 796–820. https://doi.org/10.1002/wer.1279.
Garofalo, G., and J. J. Sansalone. 2011. “Transient elution of particulate matter from hydrodynamic unit operations as a function of computational parameters and runoff hydrograph unsteadiness.” Chem. Eng. J. 175 (1): 150–159. https://doi.org/10.1016/j.cej.2011.09.086.
Goula, A. M., M. Kostoglou, T. D. Karapantsios, and A. I. Zouboulis. 2008. “A CFD methodology for the design of sedimentation tanks in potable water treatment: Case study: The influence of a feed flow control baffle.” Chem. Eng. J. 140 (1–3): 110–121. https://doi.org/10.1016/J.CEJ.2007.09.022.
Guan, L., J. Salinas, N. Zgheib, and S. Balachandar. 2021. “The role of bed-penetrating Kelvin” “Helmholtz vortices on local and instantaneous bedload sediment transport.” J. Fluid Mech. 911 (Mar): 50. https://doi.org/10.1017/jfm.2020.1060.
Hazen, A. 1904. “On sedimentation.” Trans. Am. Soc. Civ. Eng. 53 (2): 45–71. https://doi.org/10.1061/TACEAT.0001655.
He, C., J. Wood, J. Marsalek, and Q. Rochfort. 2008. “Using CFD modeling to improve the inlet hydraulics and performance of a storm-water clarifier.” J. Environ. Eng. 134 (9): 722–730. https://doi.org/10.1061/(asce)0733-9372(2008)134:9(722).
Ho, C. K., J. M. Christian, E. J. Ching, J. Slavin, J. Ortega, R. Murray, and L. A. Rossman. 2016. “Sediment resuspension and transport in water distribution storage tanks.” J. Am. Water Works Assn. 108 (6): 349–361. https://doi.org/10.5942/jawwa.2016.108.0077.
Ho, J., and W. Kim. 2012. “Discrete phase modeling study for particle motion in storm water retention.” KSCE J. Civ. Eng. 16 (6): 1071–1078. https://doi.org/10.1007/s12205-012-1304-3.
Hudson, H. 1981. Water clarification processes: Practical design and evaluation. New York: Van Nostrand Reinhold.
Isenmann, G., M. Dufresne, J. Vazquez, and R. Mose. 2017. “Bed turbulent kinetic energy boundary conditions for trapping efficiency and spatial distribution of sediments in basins.” Water Sci. Technol. 76 (8): 2032–2043. https://doi.org/10.2166/wst.2017.373.
Kármán, T. V. 1930. “Mechanische Ähnlichkeit und Turbulenz.” In Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen Mathematisch-physikalische Klasse. [In German.] 58–76. Frankfurt, Germany: Weidmannsche Buchhandlung.
Kim, J., P. Moin, and R. Moser. 1987. “Turbulence statistics in fully developed channel flow at low Reynolds number.” J. Fluid Mech. 177 (Apr): 133–166. https://doi.org/10.1017/S0022112087000892.
Knatz, C., S. Rafferty, and A. Delescinskis. 2015. “Optimization of water treatment plant flow distribution with CFD modeling of an influent channel.” Water Qual. Res. J. Can. 50 (1): 72–82. https://doi.org/10.2166/wqrjc.2014.024.
Launder, B., and D. Spalding. 1974. “The numerical computation of turbulent flows.” Comput. Methods Appl. Mech. Eng. 3 (2): 269–289. https://doi.org/10.1016/0045-7825(74)90029-2.
Li, H., S. Balachandar, and J. Sansalone. 2021a. “Discordance of tracer transport and particulate matter fate in a baffled clarification system.” J. Fluids Eng. 143 (5). 13. https://doi.org/10.1115/1.4049690.
Li, H., S. Balachandar, and J. Sansalone. 2021b. “Large-eddy simulation of flow turbulence in clarification systems.” Acta Mech. 232 (4): 1–24. https://doi.org/10.1007/s00707-020-02914-1.
Li, H., and J. Sansalone. 2020a. “Collector efficiency for hydrosol deep-bed filtration of non-Brownian particles at low and finite Reynolds numbers.” Particuology 53 (Dec): 124–133. https://doi.org/10.1016/j.partic.2020.03.007.
Li, H., and J. J. Sansalone. 2020b. “CFD as a complementary tool to benchmark physical testing of PM separation by unit operations.” J. Environ. Eng. 146 (11): 04020122. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001803.
Li, H., and J. J. Sansalone. 2020c. “CFD model of PM sedimentation and resuspension in urban water clarification.” J. Environ. Eng. 146 (3): 04019118. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001649.
Li, H., D. Spelman, and J. Sansalone. 2021c. “Baffled clarification basin hydrodynamics and elution in a continuous time domain.” J. Hydrol. 595 (Apr): 125958. https://doi.org/10.1016/j.jhydrol.2021.125958.
Liu, D., X. Liu, X. Fu, and G. Wang. 2016. “Quantification of the bed load effects on turbulent open-channel flows.” J. Geophys. Res. Earth Surf. 121 (4): 767–789. https://doi.org/10.1002/2015JF003723.
Liu, K., M. Lakhote, and S. Balachandar. 2019. “Self-induced temperature correction for inter-phase heat transfer in Euler-Lagrange point-particle simulation.” J. Comput. Phys. 396 (Nov): 596–615. https://doi.org/10.1016/j.jcp.2019.06.069.
Liu, X., J. Zhang, K. D. Nielsen, and Y. A. Cataño-Lopera. 2020. “Challenges and opportunities of computational fluid dynamics in water, wastewater, and stormwater treatment.” J. Environ. Eng. 146 (11): 02520002. https://doi.org/10.1061/(asce)ee.1943-7870.0001815.
Marchioli, C., and A. Soldati. 2002. “Mechanisms for particle transfer and segregation in a turbulent boundary layer.” J. Fluid Mech. 468 (Oct): 283–315. https://doi.org/10.1017/S0022112002001738.
Mofakham, A. A., and G. Ahmadi. 2020. “Improved discrete random walk stochastic model for simulating particle dispersion and deposition in inhomogeneous turbulent flows.” J. Fluids Eng. 142 (10): 101401. https://doi.org/10.1115/1.4047538.
Mohsin, M., and D. R. Kaushal. 2016. “3D CFD validation of invert trap efficiency for sewer solid management using VOF model.” Water Sci. Eng. 9 (2): 106–114. https://doi.org/10.1016/j.wse.2016.06.006.
Morvan, H. P. 2004. “Discussion of bed shear stress boundary condition for storage tank sedimentation” by Åsa Adamsson, Virginia Stovin, and Lars Bergdahl.” J. Environ. Eng. 130 (9): 1067–1068. https://doi.org/10.1061/(asce)0733-9372(2004)130:9(1067).
Patankar, S. V., and D. B. Spalding. 1970. Heat and mass transfer in boundary layers: A general calculation procedure. Scranton, PA: International Textbook Company.
Pathapati, S. S., and J. J. Sansalone. 2009. “CFD modeling of a storm-water hydrodynamic separator.” J. Environ. Eng. 135 (4): 191–202. https://doi.org/10.1061/(asce)0733-9372(2009)135:4(191).
Pathapati, S. S., and J. J. Sansalone. 2012. “Modeling particulate matter resuspension and washout from urban drainage hydrodynamic separators.” J. Environ. Eng. 138 (1): 90–100. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000427.
Peng, L., P. V. Nielsen, X. Wang, S. Sadrizadeh, L. Liu, and Y. Li. 2016. “Possible user-dependent CFD predictions of transitional flow in building ventilation.” Build. Environ. 99 (Apr): 130–141. https://doi.org/10.1016/j.buildenv.2016.01.014.
Pope, S. B. 2000. “Turbulent flows.” Accessed January 2, 2018. https://www.cambridge.org/core/product/identifier/9780511840531/type/book.
Salinas, J., S. Balachandar, M. Shringarpure, J. Fedele, D. Hoyal, and M. Cantero. 2020. “Soft transition between subcritical and supercritical currents through intermittent cascading interfacial instabilities.” Proc. Natl. Acad. Sci. 117 (31): 18278–18284. https://doi.org/10.1073/PNAS.2008959117.
Salinas, J. S., M. Shringarpure, M. I. Cantero, and S. Balachandar. 2018. “Mixing at a sediment concentration interface in turbulent open channel flow.” Environ. Fluid Mech. 18 (1): 173–200. https://doi.org/10.1007/s10652-017-9521-4.
Schiller, L., and Z. Naumann. 1935. “A drag coefficient correlation.” Zeitschrift Des Vereins Deutscher Ingenieure 77: 318–320.
Sondak, D. L. 1992. “Wall functions for the k - turbulence model in generalized nonorthogonal curvilinear coordinates.” Ph.D. thesis. Dept. of Mechanical Engineering, Iowa State Univ.
Spelman, D., and J. J. Sansalone. 2017. “Methods to model particulate matter clarification of unit operations subject to unsteady loadings.” Water Res. 115 (2): 347–359. https://doi.org/10.1016/J.WATRES.2017.02.053.
Stamou, A. I., E. W. Adams, and W. Rodi. 1989. “Numerical modeling of flow and settling in primary rectangular clarifiers.” J. Hydraul. Res. 27 (5): 665–682. https://doi.org/10.1080/00221688909499117.
Stovin, V. R., and A. J. Saul. 1996. “Efficiency prediction for storage chambers using computational fluid dynamics.” Water Sci. Technol. 33 (9): 163–170. https://doi.org/10.2166/wst.1996.0202.
Stovin, V. R., and A. J. Saul. 1998. “A computational fluid dynamics (CFD) particle tracking approach to efficiency prediction.” Water Sci. Technol. 37 (1): 285–293. https://doi.org/10.1016/S0273-1223(97)00780-4.
Stovin, V. R., A. J. Saul, A. Drinkwater, and I. Clifforde. 1999. “Field testing CFD-based predictions of storage chamber gross solids separation efficiency.” Water Sci. Technol. 39 (9): 161–168. https://doi.org/10.1016/S0273-1223(99)00229-2.
Van Driest, E. R. 1956. “On turbulent flow near a wall.” J. Aeronaut. Sci. 23 (11): 1007–1011. https://doi.org/10.2514/8.3713.
Wilcox, D. C. 2006. Turbulence modeling for CFD. 3rd ed. Washington, DC: DCW Industries.
Wilson, J. M., C. L. Knatz, and J. A. McCorquodale. 2020. “A multi-faceted CFD evaluation of an existing secondary clarifier.” In Proc., World Environmental and Water Resources Congress 2020: Water, Wastewater, and Stormwater and Water Desalination and Reuse, 154–167. Reston, VA: ASCE.
Wolfshtein, M. 1969. “The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient.” Int. J. Heat Mass Transfer 12 (3): 301–318. https://doi.org/10.1016/0017-9310(69)90012-X.
Yan, H., G. Lipeme Kouyi, C. Gonzalez-Merchan, C. Becouze-Lareure, C. Sebastian, S. Barraud, and J. L. Bertrand-Krajewski. 2014. “Computational fluid dynamics modelling of flow and particulate contaminants sedimentation in an urban stormwater detention and settling basin.” Environ. Sci. Pollut. Res. 21 (8): 5347–5356. https://doi.org/10.1007/s11356-013-2455-6.
Yan, H., N. Vosswinkel, S. Ebbert, G. Lipeme Kouyi, R. Mohn, M. Uhl, and J. L. Bertrand-Krajewski. 2020. “Numerical investigation of particles transport, deposition and resuspension under unsteady conditions in constructed stormwater ponds.” Environ. Sci. Eur. 32 (1): 76. https://doi.org/10.1186/s12302-020-00349-y.
Yang, H., D. Z. Zhu, and L. Li. 2018. “Numerical modeling on sediment capture in catch basins.” Water Sci. Technol. 77 (5): 1346–1354. https://doi.org/10.2166/wst.2018.009.
Ying, G., and J. Sansalone. 2010. “Transport and solubility of Hetero-disperse dry deposition particulate matter subject to urban source area rainfall-runoff processes.” J. Hydrol. 383 (3–4): 156–166. https://doi.org/10.1016/j.jhydrol.2009.12.030.
Zhu, X., V. Chatain, M. Gautier, D. Blanc-Biscarat, C. Delolme, N. Dumont, J. B. Aubin, and G. Lipeme Kouyi. 2020. “Combination of Lagrangian discrete phase model and sediment physico-chemical characteristics for the prediction of the distribution of trace metal contamination in a stormwater detention basin.” Sci. Total Environ. 698 (Jan): 134263. https://doi.org/10.1016/j.scitotenv.2019.134263.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 147Issue 7July 2021

History

Received: Dec 7, 2020
Accepted: Mar 21, 2021
Published online: May 14, 2021
Published in print: Jul 1, 2021
Discussion open until: Oct 14, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Researcher, Engineering School of Sustainable Infrastructure and Environment, Univ. of Florida, Gainesville, FL 32611 (corresponding author). ORCID: https://orcid.org/0000-0002-2343-2813. Email: [email protected]
John Sansalone, Ph.D., M.ASCE [email protected]
Professor, Engineering School of Sustainable Infrastructure and Environment, Univ. of Florida, Gainesville, FL 32611. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share