Technical Papers
May 25, 2021

Purifying Heavily Polluted River Water Using Immobilized Native Photosynthetic Bacteria

Publication: Journal of Environmental Engineering
Volume 147, Issue 8

Abstract

Black putrid river water is often found in densely populated regions with rapid economic development and population growth. This study proposes immobilized native photosynthetic bacteria (PSB), a group of bacteria that can survive in and simultaneously purify a wide range of polluted water bodies, as a novel method for treating heavily polluted river water. A native photosynthetic bacterial (PSB) colony that is a mixture of Rhodovulum strictum and Thiococcus pfennigii was isolated from river sediment (River Zaoyu, Beijing), enriched, and immobilized to purify heavily polluted river water. Consequently, the immobilized PSB was used to treat heavily polluted river water (from the River Zaoyu), with results showing a 70.5% reduction in chemical oxygen demand (COD) in 120 h. The removal efficiency of sulfide and ammonia nitrogen reached 91.7% and 28.3% in 48 and 24 h, respectively. In addition, the dissolved oxygen concentration rose from 0.31 to 1.52  mgL1 in 48 h. Moreover, the heavily polluted river water became much less turbid following immobilized PSB treatment. This study demonstrates that the applicability of PSB in purifying heavily polluted river and immobilizing microorganisms like the PSB could be a prospective approach to enhance their performance in water bodies with low carbon, low dissolved oxygen (DO), high nitrogen, and high phosphorus.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

Appia-Ayme, C., P. J. Little, Y. Matsumoto, A. P. Leech, and B. C. Berks. 2001. “Cytochrome complex essential for photosynthetic oxidation of both thiosulfate and sulfide in Rhodovulum sulfidophilum.” J. Bacteriol. 183 (20): 6107–6118.
Awual, M. R. 2015. “A novel facial composite adsorbent for enhanced copper(II) detection and removal from wastewater.” Chem. Eng. J. 266 (Apr): 368–375. https://doi.org/10.1016/j.cej.2014.12.094.
Awual, M. R. 2016a. “Assessing of lead(III) capturing from contaminated wastewater using ligand doped conjugate adsorbent.” Chem. Eng. J. 289 (Apr): 65–73. https://doi.org/10.1016/j.cej.2015.12.078.
Awual, M. R. 2016b. “Ring size dependent crown ether based mesoporous adsorbent for high cesium adsorption from wastewater.” Chem. Eng. J. 303 (Nov): 539–546. https://doi.org/10.1016/j.cej.2016.06.040.
Awual, M. R. 2016c. “Solid phase sensitive palladium(II) ions detection and recovery using ligand based efficient conjugate nanomaterials.” Chem. Eng. J. 300 (Sep): 264–272. https://doi.org/10.1016/j.cej.2016.04.071.
Awual, M. R. 2017a. “New type mesoporous conjugate material for selective optical copper(II) ions monitoring & removal from polluted waters.” Chem. Eng. J. 307 (Jan): 85–94. https://doi.org/10.1016/j.cej.2016.07.110.
Awual, M. R. 2017b. “Novel nanocomposite materials for efficient and selective mercury ions capturing from wastewater.” Chem. Eng. J. 307 (Jan): 456–465. https://doi.org/10.1016/j.cej.2016.08.108.
Awual, M. R. 2019. “An efficient composite material for selective lead(II) monitoring and removal from wastewater.” J. Environ. Chem. Eng. 7 (3): 103087. https://doi.org/10.1016/j.jece.2019.103087.
Awual, M. R., M. M. Hasan, A. M. Asiri, and M. M. Rahman. 2019a. “Cleaning the arsenic(V) contaminated water for safe-guarding the public health using novel composite material.” Composites Part B 171 (Aug): 294–301. https://doi.org/10.1016/j.compositesb.2019.05.078.
Awual, M. R., M. M. Hasan, A. M. Asiri, and M. M. Rahman. 2019b. “Novel optical composite material for efficient vanadium(III) capturing from wastewater.” J. Mol. Liq. 283 (Jun): 704–712. https://doi.org/10.1016/j.molliq.2019.03.119.
Awual, M. R., M. M. Hasan, M. A. Khaleque, and M. C. Sheikh. 2016. “Treatment of copper(II) containing wastewater by a newly developed ligand based facial conjugate materials.” Chem. Eng. J. 288 (Mar): 368–376. https://doi.org/10.1016/j.cej.2015.11.108.
Awual, M. R., M. M. Hasan, M. M. Rahman, and A. M. Asiri. 2019c. “Novel composite material for selective copper(II) detection and removal from aqueous media.” J. Mol. Liq. 283 (Jun): 772–780. https://doi.org/10.1016/j.molliq.2019.03.141.
Bai, H. J., Z. M. Zhang, Y. Guo, and G. E. Yang. 2009. “Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris.” Colloids Surf., B 70 (1): 142. https://doi.org/10.1016/j.colsurfb.2008.12.025.
Björnsson, L., P. Hugenholtz, G. W. Tyson, and L. L. Blackall. 2002. “Filamentous Chloroflexi (green non-sulfur bacteria) are abundant in wastewater treatment processes with biological nutrient removal.” Microbiology (Reading) 148 (8): 2309. https://doi.org/10.1099/00221287-148-8-2309.
Bouabidi, Z. B., M. H. El-Naas, and Z. Zhang. 2019. “Immobilization of microbial cells for the biotreatment of wastewater: A review.” Environ. Chem. Lett. 17 (1): 241–257. https://doi.org/10.1007/s10311-018-0795-7.
Cao, J., Q. Sun, D. Zhao, M. Xu, Q. Shen, D. Wang, Y. Wang, and S. Ding. 2020a. “A critical review of the appearance of black-odorous waterbodies in China and treatment methods.” J. Hazard. Mater. 385 (Mar): 121511. https://doi.org/10.1016/j.jhazmat.2019.121511.
Cao, K., R. Zhi, and G. Zhang. 2020b. “Photosynthetic bacteria wastewater treatment with the production of value-added products: A review.” Bioresour. Technol. 299 (Mar): 122648. https://doi.org/10.1016/j.biortech.2019.122648.
Chen, C. Y., C. M. Kao, S. C. Chen, H. Y. Chien, and C.E. Lin. 2007. “Application of immobilized cells to the treatment of cyanide wastewater.” Water Sci. Technol. 56 (7): 99. https://doi.org/10.2166/wst.2007.699.
Chen, J., J. Wei, C. Ma, Z. Yang, Z. Li, X. Yang, M. Wang, H. Zhang, J. Hu, and C. Zhang. 2020. “Photosynthetic bacteria-based technology is a potential alternative to meet sustainable wastewater treatment requirement?” Environ. Int. 137 (Apr): 105417. https://doi.org/10.1016/j.envint.2019.105417.
Cheng, J., H. Su, J. Zhou, W. Song, and K. Cen. 2011. “Hydrogen production by mixed bacteria through dark and photo fermentation.” Int. J. Hydrogen Energy 36 (1): 450–457. https://doi.org/10.1016/j.ijhydene.2010.10.007.
Ding, A. Z., F. Z. Chen, J. Q. Lei, F. U. Jia-Mo, and G. Y. Sheng. 2000. “Water quality for aquiculture improved by photosynthetic bacteria.” Agro-Environ. Prot. 2000 (6): 006.
Duval, B., and S. D. Ludlam. 2015. “The black water chemocline of meromictic lower Mystic Lake, Massachusetts, U.S.A.” Int. Rev. Hydrobiol. 86 (2): 165–181. https://doi.org/10.1002/1522-2632(200104)86:2%3C165::AID-IROH165%3E3.0.CO;2-Y.
Eimhjellen, K. E. 1970. “Thiocapsa pfennigii sp. nov. a new species of the phototrophic sulfur bacteria.” Arch. Mikrobiol. 73: 193–194. https://doi.org/10.1007/BF00410321.
Fradinho, J. C., J. M. B. Domingos, G. Carvalho, A. Oehmen, and M. A. M. Reis. 2013. “Polyhydroxyalkanoates production by a mixed photosynthetic consortium of bacteria and algae.” Bioresour. Technol. 132 (Mar): 146–153. https://doi.org/10.1016/j.biortech.2013.01.050.
Gan, Y., Q. Zhao, and Z. Ye. 2019. “Denitrification performance and microbial diversity of immobilized bacterial consortium treating nitrate micro-polluted water.” Bioresour. Technol. 281 (Jun): 351–358. https://doi.org/10.1016/j.biortech.2019.02.111.
Gaur, V. K., S. K. Gupta, S. D. Pandey, K. Gopal, and V. Misra. 2005. “Distribution of heavy metals in sediment and water of River Gomti.” Environ. Monit. Assess. 102 (1): 419–433. https://doi.org/10.1007/s10661-005-6395-6.
Gest, H. 2002. “Landmark discoveries in the trail from chemistry to cellular biochemistry, with particular reference to mileposts in research on bioenergetics.” Biochem. Mol. Biol. Educ. 30: 9–13. https://doi.org/10.1002/bmb.2002.494030010004.
He, W., J. Shang, X. Lu, and C. Fan. 2013. “Effects of sludge dredging on the prevention and control of algae-caused black bloom in Taihu Lake China.” J. Environ. Sci. China 25 (3): 430–440. https://doi.org/10.1016/S1001-0742(12)60098-9.
Hiromitsu, T., K. Takeno, M. Watanabe, and K. Sasaki. 1999. “Treatment of aquarium water by denitrifying photosynthetic bacteria using immobilized polyvinyl alcohol beads.” J. Biosci. Bioeng. 87 (2): 189. https://doi.org/10.1016/S1389-1723(99)89011-2.
Idi, A., M. H. Nor, M. F. Wahab, and Z. Ibrahim. 2015. “Photosynthetic bacteria: An eco-friendly and cheap tool for bioremediation.” Rev. Environ. Sci. Bio/Technol. 14 (2): 271–285. https://doi.org/10.1007/s11157-014-9355-1.
Jeong, S. K., J.-S. Cho, I.-S. Kong, H. Do Jeong, and J. K. Kim. 2009. “Purification of aquarium water by PVA gel-immobilized photosynthetic bacteria during goldfish rearing.” Biotechnol. Bioprocess Eng. 14 (2): 238–247. https://doi.org/10.1007/s12257-008-0195-0.
Kaewsuk, J., W. Thorasampan, M. Thanuttamavong, and G. T. Seo. 2010. “Kinetic development and evaluation of membrane sequencing batch reactor (MSBR) with mixed cultures photosynthetic bacteria for dairy wastewater treatment.” J. Environ. Manage. 91 (15): 1161–1168. https://doi.org/10.1016/j.jenvman.2010.01.012.
Kim, M. K., K. M. Choi, C. R. Yin, K. Y. Lee, W. T. Im, H. L. Ju, and S. T. Lee. 2004. “Odorous swine wastewater treatment by purple non-sulfur bacteria, Rhodopseudomonas palustris, isolated from eutrophicated ponds.” Biotechnol. Lett. 26 (10): 819–822. https://doi.org/10.1023/B:BILE.0000025884.50198.67.
Kobayashi, H. A., M. Stenstrom, and R. A. Mah. 1983. “Use of photosynthetic bacteria for hydrogen sulfide removal from anaerobic waste treatment effluent.” Water Res. 17 (15): 579–587. https://doi.org/10.1016/0043-1354(83)90117-3.
Kobayashi, M., and Y. T. Tchan. 1973. “Treatment of industrial waste solutions and production of useful by-products using a photosynthetic bacterial method.” Water Res. 7 (8): 1219–1224. https://doi.org/10.1016/0043-1354(73)90075-4.
Krogmann, D. 2004. “Discoveries in oxygenic photosynthesis (1727–2003): A perspective.” Photosynth. Res. 80 (1): 15–57.
Liu, C., Q. Shen, Q. Zhou, C. Fan, and S. Shao. 2015. “Precontrol of algae-induced black blooms through sediment dredging at appropriate depth in a typical eutrophic shallow lake.” Ecol. Eng. 77 (Apr): 139–145. https://doi.org/10.1016/j.ecoleng.2015.01.030.
Lorrungruang, C., J. Martthong, K. Sasaki, and N. Noparatnaraporn. 2006. “Selection of photosynthetic bacterium Rhodobacter sphaeroides 14F for polyhydroxyalkanoate production with two-stage aerobic dark cultivation.” J. Biosci. Bioeng. 102 (2): 128–131. https://doi.org/10.1263/jbb.102.128.
Lu, H., T. Han, G. Zhang, S. Ma, Y. Zhang, B. Li, and W. Cao. 2018. “Natural light-micro aerobic condition for PSB wastewater treatment: A flexible, simple, and effective resource recovery wastewater treatment process.” Environ. Technol. 39 (1): 74–82. https://doi.org/10.1080/09593330.2017.1296027.
Lu, H., G. Zhang, X. Dai, and C. He. 2010. “Photosynthetic bacteria treatment of synthetic soybean wastewater: Direct degradation of macromolecules.” Bioresour. Technol. 101 (19): 7672–7674. https://doi.org/10.1016/j.biortech.2010.04.074.
Lu, H., G. Zhang, X. Dai, L. Schideman, Y. Zhang, B. Li, and H. Wang. 2013. “A novel wastewater treatment and biomass cultivation system combining photosynthetic bacteria and membrane bioreactor technology.” Desalination 322: 176–181. https://doi.org/10.1016/j.desal.2013.05.007.
Martens, N., and E. A. Hall. 1994. “Immobilisation of photosynthetic cells based on film-forming emulsion polymers.” Anal. Chim. Acta 292 (1–2): 49–63. https://doi.org/10.1016/0003-2670(94)00038-7.
Martins, S. C. S., C. M. Martins, L. M. C. G. Fiúza, and S. T. Santaella. 2013. “Immobilization of microbial cells: A promising tool for treatment of toxic pollutants in industrial wastewater.” Afr. J. Biotechnol. 12 (28): 4412–4418. https://doi.org/10.5897/AJB12.2677.
McDevitt, C. A., P. Hugenholtz, G. R. Hanson, and A. G. McEwan. 2002. “Molecular analysis of dimethyl sulphide dehydrogenase from Rhodovulum sulfidophilum: Its place in the dimethyl sulphoxide reductase family of microbial molybdopterin-containing enzymes.” Mol. Microbiol. 44 (6): 1575. https://doi.org/10.1046/j.1365-2958.2002.02978.x.
Ministry of Ecology and Environment of the People’s Republic of China 1990. Water quality—Determination of total phosphorus—Ammonium molybdate spectrophotometric method. Beijing: Ministry of Ecology and Environment of the People’s Republic of China.
Moreno-Garrido, I. 2008. “Microalgae immobilization: Current techniques and uses.” Bioresour. Technol. 99 (10): 3949–3964. https://doi.org/10.1016/j.biortech.2007.05.040.
Muñoz, R., and B. Guieysse. 2006. “Algal–bacterial processes for the treatment of hazardous contaminants: A review.” Water Res. 40 (15): 2799. https://doi.org/10.1016/j.watres.2006.06.011.
Perera, E. D. P., K. Jinno, and Y. Hiroshiro. 2010. “Bacteria-mediated reduction and precipitation of Fe(OH)3 and FeS in the subsurface of a coastal aquifer: A numerical investigation.” Water Qual. Exposure Health 2 (1): 15–30. https://doi.org/10.1007/s12403-009-0021-8.
Prachanurak, P., C. Chiemchaisri, W. Chiemchaisri, and K. Yamamotob. 2014. “Biomass production from fermented starch wastewater in photo-bioreactor with internal overflow recirculation.” Bioresour. Technol 165 (Aug): 129–136. https://doi.org/10.1016/j.biortech.2014.03.119.
Qin, L., Q. Liu, Q. Meng, Z. Fan, J. He, T. Liu, C. Shen, and G. Zhang. 2017. “Anoxic oscillating MBR for photosynthetic bacteria harvesting and high salinity wastewater treatment.” Bioresour. Technol. 224 (Jan): 69. https://doi.org/10.1016/j.biortech.2016.10.067.
Satybaldiyev, B., H. Tuovinen, B. Uralbekov, J. Lehto, and M. Burkitbayev. 2015. “Heavy metals and natural radionuclides in the water of Syr Darya River, Kazakhstan.” In Vol. 34 of Uranium—Past and future challenges, 155–160. Cham, Switzerland: Springer.
Shen, T., S. K. Liu, F. U. Luo-Qin, J. J. Zheng, and L. I. Wei-Fen. 2012. “Application and mechanism of photosynthetic bacteria in fish culture.” Fish. Sci. 873 (2): 521–527.
Sheng, Y., Y. Qu, C. Ding, Q. Sun, and R. J. G. Mortimer. 2013. “A combined application of different engineering and biological techniques to remediate a heavily polluted river.” Ecol. Eng. 57 (Aug): 1–7. https://doi.org/10.1016/j.ecoleng.2013.04.004.
Siefert, E., R. L. Irgens, and N. Pfennig. 1978. “Phototrophic purple and green bacteria in a sewage treatment plant.” Appl. Environ. Microbiol. 35 (Jan): 38–44. https://doi.org/10.1128/AEM.35.1.38-44.1978.
Smith, R. L., S. P. Buckwalter, D. A. Repert, and D. N. Miller. 2005. “Small-scale, hydrogen-oxidizing-denitrifying bioreactor for treatment of nitrate-contaminated drinking water.” Water Res. 39 (10): 2014–2023. https://doi.org/10.1016/j.watres.2005.03.024.
Sorokin, D. Y., V. M. Gorlenko, B. B. Namsaraev, Z. B. Namsaraev, A. M. Lysenko, B. T. Eshinimaev, V. N. Khmelenina, Y. A. Trotsenko, and J. G. Kuenen. 2004. “Prokaryotic communities of the north-eastern Mongolian soda lakes.” Hydrobiologia 522 (1): 235–248. https://doi.org/10.1023/B:HYDR.0000029989.73279.e4.
Stahl, J. B. 1979. “Black water and two peculiar types of stratification in an organically loaded strip-mine lake.” Water Res. 13 (5): 467–471. https://doi.org/10.1016/0043-1354(79)90040-X.
Sun, S., S. Fan, K. Shen, S. Lin, X. Nie, M. Liu, F. Dong, and J. Li. 2017. “Laboratory assessment of bioleaching of shallow eutrophic sediment by immobilized photosynthetic bacteria.” Environ. Sci. Pollut. Res. 24 (28): 22143–22151. https://doi.org/10.1007/s11356-016-8077-z.
Sunita, M., and C. K. Mitra. 1993. “Photoproduction of hydrogen by photosynthetic bacteria from sewage and waste water.” J. Biosci. 18 (1): 155–160. https://doi.org/10.1007/BF02703047.
Takeno, K., Y. Yamaoka, and K. Sasaki. 2005. “Treatment of oil-containing sewage wastewater using immobilized photosynthetic bacteria.” World J. Microbiol. Biotechnol. 21 (8): 1385–1391. https://doi.org/10.1007/s11274-005-5739-2.
Tampion, J., and M. D. Tampion. 1987. Immobilized cells: Principles and applications. New York: Press Syndicate of the University of Cambridge.
Tortajada, C., and A. K. Biswas. 2020. “Water management in post-2020 world.” Int. J. Water Resour. Dev. 36 (6): 874–878. https://doi.org/10.1080/07900627.2020.1837451.
Wang, G., X. Li, Y. Fang, and R. Huang. 2014. “Analysis on the formation condition of the algae-induced odorous black water agglomerate.” Saudi J. Biol. Sci. 21 (6): 597–604. https://doi.org/10.1016/j.sjbs.2014.07.002.
Wang, H., G. Zhang, M. Peng, Q. Zhou, J. Li, H. Xu, and F. Meng. 2016. “Synthetic white spirit wastewater treatment and biomass recovery by photosynthetic bacteria: Feasibility and process influence factors.” Int. Biodeter. Biodegr. 113 (Sep): 134–138. https://doi.org/10.1016/j.ibiod.2016.01.001.
Wang, L., and L. Liao. 2005. “Photosynthetic bacteria immobilization and its purification on aquaculture water.” J. Microbiol. 25 (3): 50–53.
Willison, J. C. 2010. “Biochemical genetics revisited: The use of mutants to study carbon and nitrogen metabolism in the photosynthetic bacteria.” FEMS Microbiol. Rev. 104 (1–2): 1–38. https://doi.org/10.1111/j.1574-6968.1993.tb05862.x.
Wu, T. Y., J. X. W. Hay, L. B. Kong, J. C. Juan, and J. M. Jahim. 2012. “Recent advances in reuse of waste material as substrate to produce biohydrogen by purple non-sulfur (PNS) bacteria.” Renewable Sustainable Energy Rev. 16 (5): 3117–3122. https://doi.org/10.1016/j.rser.2012.02.002.
Xia, B. T., G. H. Zheng, X. U. Hang-Jun, and J. L. Qiao. 2008. “Technological advances in management of urban landscape waters.” Environ. Sci. Technol. 31 (6): 021.
Xu, H., G. Zhang, M. Peng, H. Wang, and G. Yang. 2016. “Research progress of technology and application of immobilized photosynthetic bacteria.” Environ. Sci. Technol. 39 (7): 105–113.
Zhang, X. J., C. Chen, J. Q. Ding, A. Hou, Y. Li, Z. B. Niu, X. Y. Su, Y. J. Xu, and E. A. Laws. 2010. “The 2007 water crisis in Wuxi, China: Analysis of the origin.” J. Hazard. Mater. 182 (1–3): 130–135. https://doi.org/10.1016/j.jhazmat.2010.06.006.
Zhou, Q., G. Zhang, Y. Lu, and P. Wu. 2016. “Feasibility study and process optimization of citric acid wastewater treatment and biomass production by photosynthetic bacteria.” Desalin. Water Treat. 57 (14): 6261–6267. https://doi.org/10.1080/19443994.2015.1005687.
Zhou, Q., P. Zhang, and G. Zhang. 2014. “Biomass and carotenoid production in photosynthetic bacteria wastewater treatment: Effects of light intensity.” Bioresour. Technol. 171: 330–335. https://doi.org/10.1016/j.biortech.2014.08.088.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 147Issue 8August 2021

History

Received: Dec 1, 2020
Accepted: Mar 20, 2021
Published online: May 25, 2021
Published in print: Aug 1, 2021
Discussion open until: Oct 25, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Meng Peng, Ph.D. [email protected]
Postdoctoral Research Fellow, School of Environment, Tsinghua Univ., 30 Shuangqing Rd., Beijing 100083, China. Email: [email protected]
Ph.D. Scholar, Fenner School of Environment and Society, Australian National Univ., 48 Linnaeus Way, Canberra, Acton, ACT 2601, Australia. ORCID: https://orcid.org/0000-0001-8904-2976. Email: [email protected]
Guang Yang, Ph.D. [email protected]
Postdoctoral Research Fellow, Laboratory of Environmental Technology, Institute of Nuclear and New Energy Technology, Tsinghua Univ., 30 Shuangqing Rd., Beijing 100083, China (corresponding author). Email: [email protected]; [email protected]
Guangming Zhang, Ph.D. [email protected]
Professor, School of Energy and Environmental Engineering, Hebei Institute of Technology, Tianjin 300401, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share