Abstract

To investigate the effects of different types and concentrations of organic matter on anaerobic ammonium oxidation (anammox), the effects of short-term stresses induced by organic matter on anammox-based nitrogen removal and the associated microbial community were evaluated by adding different organic matter (e.g., glucose, acetic acid, sodium acetate, methanol, and phenol) and concentrations (e.g., 20250  mgCOD/L) into anammox batch reactors (serum bottles) with 46 h. Results indicated that the addition of glucose, acetic acid, and sodium acetate (i.e., at concentrations ranging from 20 to 250  mgCOD/L) promoted nitrite removal. Methanol was the most potent inhibitor on ammonium removal, while phenol inhibited ammonium removal even at a low concentration (e.g., 20  mgCOD/L). The microbial community structure and composition under organic matter addition was illustrated by high-throughput Miseq sequencing analyses. The phylum Firmicutes was predominant in all samples, followed by Planctomycetes, Proteobacteria, and Chloroflexi, respectively. Planctomycetes, which was related to anammox bacteria, including Candidatus Jettenia and Candidatus Brocadia, dramatically decreased under sodium acetate and methanol stress, respectively.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51508366), Opening Fund of Jiangsu Provincial Key Laboratory of Environmental Science and Engineering (No. Zd1804), Opening Fund of Jiangsu Key Laboratory of Anaerobic Biotechnology (Jiangnan University) (No. KFLAB201701), and Pre-research Fund of Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment (No. XTCXSZ2019–3).

References

Anjali, G., and P. C. Sabumon. 2014. “Unprecedented development of anammox in presence of organic carbon using seed biomass from a tannery common effluent treatment plant (CETP).” Bioresour. Technol. 153 (Feb): 30–38. https://doi.org/10.1016/j.biortech.2013.11.061.
APHA, AWWA, and WEF (American Public Health Association, American Water Works Association, and Water Environment Federation). 2012. Standard methods for the examination of water and wastewater. 22nd ed. Washington, DC: APHA.
Cao, S. B., D. Rui, B. K. Li, N. Q. Ren, and Y. Z. Peng. 2016. “High-throughput profiling of microbial community structures in an ANAMMOX-UASB reactor treating high-strength wastewater.” Appl. Microbiol. Biotechnol. 100 (14): 6457–6467. https://doi.org/10.1007/s00253-016-7427-6.
Chamchoi, N., S. Nitisoravut, and J. E. Schmidt. 2008. “Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification.” Bioresour. Technol. 99 (9): 3331–3336. https://doi.org/10.1016/j.biortech.2007.08.029.
Chao, A., C. H. Chiu, T. C. Hsieh, T. Davis, D. A. Nipperess, and D. P. Faith. 2015. “Rarefaction and extrapolation of phylogenetic diversity.” Methods Ecol. Evol. 6 (4): 380–388. https://doi.org/10.1111/2041-210X.12247.
Chen, C. J., X. X. Huang, C. X. Lei, T. C. Zhang, and W. X. Wu. 2013. “Effect of organic matter strength on anammox for modified greenhouse turtle breeding wastewater treatment.” Bioresour. Technol. 148 (Nov): 172–179. https://doi.org/10.1016/j.biortech.2013.08.132.
Chen, C. J., F. Q. Sun, H. Q. Zhang, J. F. Wang, Y. L. Shen, and X. Q. Liang. 2016. “Evaluation of COD effect on anammox process and microbial communities in the anaerobic baffled reactor (ABR).” Bioresour. Technol. 216 (Sep): 571–578. https://doi.org/10.1016/j.biortech.2016.05.115.
Chen, C. J., M. Zhang, X. L. Yu, J. Mei, Y. Jiang, Y. Q. Wang, and T. C. Zhang. 2018. “Effect of C/N ratios on nitrogen removal and microbial communities in the anaerobic baffled reactor (ABR) with an anammox-coupling-denitrification process.” Water Sci. Technol. 78 (11): 2338–2348. https://doi.org/10.2166/wst.2018.516.
Chen, T. T., P. Zheng, L. D. Shen, S. Ding, and Q. Mahmood. 2011. “Kinetic characteristics and microbial community of anammox-EGSB reactor.” J. Hazard. Mater. 190 (1–3): 28–35. https://doi.org/10.1016/j.jhazmat.2010.12.060.
Chu, Z. R., K. Wang, X. K. Li, M. T. Zhu, L. Yang, and J. Zhang. 2015. “Microbial characterization of aggregates within a one-stage nitritation–anammox system using high-throughput amplicon sequencing.” Chem. Eng. J. 262 (Feb): 41–48. https://doi.org/10.1016/j.cej.2014.09.067.
Dapena-Mora, A., I. Fernandez, J. L. Campos, A. Mosquera-Corral, R. Mendez, and M. S. M. Jetten. 2007. “Evaluation of activity and inhibition effects on anammox process by batch tests based on the nitrogen gas production.” Enzyme Microb. Technol. 40 (4): 859–865. https://doi.org/10.1016/j.enzmictec.2006.06.018.
Ding, S. Z., P. Bao, B. Wang, Q. Zhang, and Y. Z. Peng. 2018. “Long-term stable simultaneous partial nitrification anammox and denitrification (SNAD) process treating real domestic sewage using suspended activated sludge.” Chem. Eng. J. 339 (May): 180–188. https://doi.org/10.1016/j.cej.2018.01.128.
Ge, C. H., N. Sun, Q. Kang, L. F. Ren, H. A. Ahmad, S. Q. Ni, and Z. Wang. 2017. “Bacterial community evolutions driven by organic matter and powder activated carbon in simultaneous anammox and denitrification (SAD) process.” Bioresour. Technol. 251 (Mar): 13–21. https://doi.org/10.1016/j.biortech.2017.12.017.
Guo, Q., H. Y. Hu, Z. J. Shi, C. C. Yang, P. Li, M. Huang, W. M. Ni, M. L. Shi, and R. C. Jin. 2016. “Towards simultaneously removing nitrogen and sulfur by a novel process: Anammox and autotrophic desulfurization–denitrification (AADD).” Chem. Eng. J. 297 (Aug): 207–216. https://doi.org/10.1016/j.cej.2016.03.138.
Güven, D., et al. 2005. “Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria.” Appl. Environ. Microbiol. 71 (2): 1066–1071. https://doi.org/10.1128/AEM.71.2.1066-1071.2005.
Isaka, K., Y. Suwa, Y. Kimura, T. Yamagishi, T. Sumino, and S. Tsuneda. 2008. “Anaerobic ammonium oxidation (anammox) irreversibly inhibited by methanol.” Appl. Microbiol. Biotechnol. 81 (2): 379–385. https://doi.org/10.1007/s00253-008-1739-0.
Jenni, S., S. E. Vlaeminck, E. Morgenroth, and K. M. Udert. 2014. “Successful application of nitritation/anammox to wastewater with elevated organic carbon to ammonia ratios.” Water Res. 49 (Feb): 316–326. https://doi.org/10.1016/j.watres.2013.10.073.
Jin, R. C., G. F. Yang, J. J. Yu, and P. Zheng. 2012. “The inhibition of the anammox process: A review.” Chem. Eng. J. 197 (Jul): 67–79. https://doi.org/10.1016/j.cej.2012.05.014.
Keluskar, R., A. Nerurkar, and A. Desai. 2013. “Development of a simultaneous partial nitrification anaerobic ammonia oxidation and denitrification (SNAD) bench scale process for removal of ammonia from effluent of a fertilizer industry.” Bioresour. Technol. 130 (Feb): 390–397. https://doi.org/10.1016/j.biortech.2012.12.066.
Khiewwijit, R., H. Rijnaarts, H. Temmink, and K. J. Keesman. 2018. “Glocal assessment of integrated wastewater treatment and recovery concepts using partial nitritation/anammox and microalgae for environmental impacts.” Sci. Total Environ. 628–629 (Jul): 74–84. https://doi.org/10.1016/j.scitotenv.2018.01.334.
Kindaichi, T., I. Tsushima, Y. Ogasawara, M. Shimokawa, N. Ozaki, H. Satoh, and S. Okabe. 2007. “In situ activity and spatial organization of anaerobic ammonium-oxidizing (anammox) bacteria in biofilms.” Appl. Environ. Microbiol. 73 (15): 4931–4939. https://doi.org/10.1128/AEM.00156-07.
Kuenen, J. G. 2008. “Anammox bacteria: From discovery to application.” Nat. Rev. Microbiol. 6 (4): 320–326. https://doi.org/10.1038/nrmicro1857.
Leal, C. D., A. D. Pereira, F. T. Nunes, L. O. Ferreira, A. C. C. Coelho, S. K. Bicalho, E. F. A. Conell, T. B. Ribeiro, C. A. de Lemos Chernicharo, and J. C. de Araújo. 2016. “Anammox for nitrogen removal from anaerobically pre-treated municipal wastewater: Effect of COD/N ratios on process performance and bacterial community structure.” Bioresour. Technol. 211 (Jul): 257–266. https://doi.org/10.1016/j.biortech.2016.03.107.
Lin, J. G., A. Daverey, K. Dutta, W. S. Guo, and H. H. Ngo. 2016. “Aanmmox: A sustainable technology for nitrogen removal and water recycling.” Chap. 12 in Green technologies for sustainable water management, edited by H. H. Ngo, W. S. Guo, R. Y. Surampalli, and T. C. Zhang. Reston, VA: ASCE.
Murphy, K., D. Curley, T. F. O’Callaghan, C. A. O’Shea, E. M. Dempsey, P. W. O’Toole, R. P. Ross, C. A. Ryan, and C. Stanton. 2017. “The composition of human milk and infant faecal microbiota over the first three months of life: A pilot study.” Sci. Rep. 7 (1): 1–10. https://doi.org/10.1038/srep40597.
Ni, S. Q., J. Y. Ni, D. L. Hu, and S. Sung. 2012. “Effect of organic matter on the performance of granular anammox process.” Bioresour. Technol. 110 (Apr): 701–705. https://doi.org/10.1016/j.biortech.2012.01.066.
Oshiki, M., M. Shimokawa, N. Fujii, H. Satoh, and S. Okabe. 2011. “Physiological characteristics of the anaerobic ammonium-oxidizing bacterium ‘Candidatus Brocadia sinica’.” Microbiology 157 (6): 1706–1713. https://doi.org/10.1099/mic.0.048595-0.
Park, H., A. Rosenthal, K. Ramalingam, J. Fillos, and K. Chandran. 2010. “Linking community profiles gene expression and N-removal in anammox bioreactors treating municipal anaerobic digestion reject water.” Environ. Sci. Technol. 44 (16): 6110–6116. https://doi.org/10.1021/es1002956.
Pereira, A. D., C. D. Leal, M. F. Dias, C. Etchebehere, C. A. Chernicharo, and J. C. de Araújo. 2014. “Effect of phenol on the nitrogen removal performance and microbial community structure and composition of an anammox reactor.” Bioresour. Technol. 166 (Aug): 103–111. https://doi.org/10.1016/j.biortech.2014.05.043.
Qin, Y. J., Y. Cao, J. Y. Ren, T. Y. Wang, and B. Han. 2017. “Effect of glucose on nitrogen removal and microbial community in anammox-denitrification system.” Bioresour. Technol. 244 (Nov): 33–39. https://doi.org/10.1016/j.biortech.2017.07.124.
Ramos, C., I. Fernández, M. E. Suárez-Ojeda, and J. Carrera. 2015. “Inhibition of the anammox activity by aromatic compounds.” Chem. Eng. J. 279 (Nov): 681–688. https://doi.org/10.1016/j.cej.2015.05.071.
Schloss, P. D., S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann, E. B. Hollister, R. A. Lesniewski, B. B. Oakley, D. H. Parks, and C. J. Robinson. 2009. “Introducing mothur: Open-source platform-independent community-supported software for describing and comparing microbial communities.” Appl. Environ. Microbiol. 75 (23): 7537–7541. https://doi.org/10.1128/AEM.01541-09.
Shen, D. S., X. W. Liu, and Y. H. He. 2005. “Studies on adsorption, desorption and biodegradation of pentachlorophenol by the anaerobic granular sludge in an upflow anaerobic sludge blanket (UASB) reactor.” J. Hazard. Mater. 125 (1–3): 231–236. https://doi.org/10.1016/j.jhazmat.2005.05.034.
Shu, D. T., Y. L. He, Y. Hong, L. Zhu, and Q. Y. Wang. 2015a. “Metagenomic insights into the effects of volatile fatty acids on microbial community structures and functional genes in organotrophic anammox process.” Bioresour. Technol. 196 (Nov): 621–633. https://doi.org/10.1016/j.biortech.2015.07.107.
Shu, D. T., Y. L. He, H. Yue, and Q. Y. Wang. 2015b. “Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing.” Bioresour. Technol. 186 (Jun): 163–172. https://doi.org/10.1016/j.biortech.2015.03.072.
Strous, M., J. J. Heijnen, J. G. Kuenen, and M. S. M. Jetten. 1998. “The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms.” Appl. Microbiol. Biotechnol. 50 (5): 589–596. https://doi.org/10.1007/s002530051340.
Su, X. M., B. B. Xue, Y. Y. Wang, M. Z. Hashmi, H. J. Lin, J. R. Chen, R. W. Mei, Z. Wang, and F. Q. Sun. 2019. “Bacterial community shifts evaluation in the sediments of Puyang River and its nitrogen removal capabilities exploration by resuscitation promoting factor.” Ecotoxicol. Environ. Saf. 179 (Sep): 188–197. https://doi.org/10.1016/j.ecoenv.2019.04.067.
Tang, C. J., P. Zheng, C. H. Wang, and Q. Mahmood. 2010. “Suppression of anaerobic ammonium oxidizers under high organic content in high-rate Anammox UASB reactor.” Bioresour. Technol. 101 (6): 1762–1768. https://doi.org/10.1016/j.biortech.2009.10.032.
Tomar, S., and S. K. Gupta. 2015. “A new mathematical model for nitrogen gas production with special emphasis on the role of attached growth media in anammox hybrid reactor.” Appl. Microbiol. Biotechnol. 99 (21): 9245–9254. https://doi.org/10.1007/s00253-015-6793-9.
Toh, S. K., and N. J. Ashbolt. 2002. “Adaptation of anaerobic ammonium-oxidising consortium to synthetic coke-ovens wastewater.” Appl. Microbiol. Biotechnol. 59 (2–3): 344–352. https://doi.org/10.1007/s00253-002-1007-7.
Van de Graaf, A. A., P. de Bruijn, L. A. Robertson, M. S. Jetten, and J. G. Kuenen. 1996. “Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor.” Microbiology 142 (8): 2187–2196. https://doi.org/10.1099/13500872-142-8-2187.
Wang, C., S. T. Liu, X. C. Xu, C. L. Zhang, D. Wang, and F. L. Yang. 2018. “Achieving mainstream nitrogen removal through simultaneous partial nitrification, anammox and denitrification process in an integrated fixed film activated sludge reactor.” Chemosphere 203 (Jul): 457–466. https://doi.org/10.1016/j.chemosphere.2018.04.016.
Yang, G. F., and R. C. Jin. 2012. “The joint inhibitory effects of phenol copper (II) oxytetracycline (OTC) and sulfide on Anammox activity.” Bioresour. Technol. 126 (Dec): 187–192. https://doi.org/10.1016/j.biortech.2012.09.023.
Zhang, Q. Q., H. Chen, J. H. Liu, B. E. Yang, W. M. Ni, and R. C. Jin. 2014. “The robustness of ANAMMOX process under the transient oxytetracycline (OTC) shock.” Bioresour. Technol. 153 (Feb): 39–46. https://doi.org/10.1016/j.biortech.2013.11.053.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 146Issue 10October 2020

History

Received: Feb 27, 2020
Accepted: May 11, 2020
Published online: Aug 4, 2020
Published in print: Oct 1, 2020
Discussion open until: Jan 4, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Associate Professor, School of Environmental Science and Engineering, Suzhou Univ. of Science and Technology, Xuefu Rd. 99#, Suzhou 215009, PR China (corresponding author). ORCID: https://orcid.org/0000-0002-9861-1701. Email: [email protected]
Graduate Student, School of Environmental Science and Engineering, Suzhou Univ. of Science and Technology, Xuefu Rd. 99#, Suzhou 215009, PR China. Email: [email protected]
Graduate Student, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Xuefu Rd. 99#, Suzhou 215009, PR China. Email: [email protected]
Graduate Student, Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou Univ. of Science and Technology, Xuefu Rd. 99#, Suzhou 215009, PR China. Email: [email protected]
Associate Professor, School of Environment and Civil Engineering, Jiangnan Univ., Lihu Ave. 1800#, Wuxi 214122, PR China. Email: [email protected]
Professor, Dept. of Civil and Environmental Engineering, Univ. of Nebraska-Lincoln (Omaha Campus), Omaha, NE 68182-0178. ORCID: https://orcid.org/0000-0002-9377-7462. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share