Abstract

The recovery of copper by-products from wastewater was achieved by carrying out an adsorption process coupled with an electrochemical system using modified grapefruit peels for metal recovery in a continuous flow. The adsorption capacity of grapefruit peels was 52.48  mgg1, and it was possible to reuse it in repeated adsorption–desorption cycles (more than 17). The recovery of copper from the saturated adsorbent was possible by means of a two-step process: first, desorption was carried out using 0.1 M HCl, achieving 90% of Cu(II) eluted in a concentrated solution, and then, an electrolytic process was carried out, achieving up to 65% of metal recovery as electrolyzed copper with high purity. The adsorbent material and eluted solution could be reused. In a final step, the exhausted adsorbent was processed through thermal degradation; copper adhered to the material acted as a catalyst, which reduced the energy consumption and finally resulted in the formation of copper oxide with 54% weight for weight (w/w) copper purity.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

No data, models, or codes were generated or used during the study.

Acknowledgments

The authors thank Alimentos nutracéuticos La Meza S.A. de C.V. for their support in conducting this research. Thanks are also due to the National Council of Science and Technology (CONACyT, México), for the Project No. 256943 “Fondo de investigación científica básica 2015,” and ERDF/Ministry of Science, Innovation and Universities—State Research Agency/_Project Ref. RTI2018-099224-B-I00. Luis A. Romero-Cano is specially grateful to the CONACyT (México) for the support received with Scholarship No. 378307 and Helena García-Rosero gratefully acknowledges COLCIENCIAS (Colombia) for supporting her Ph.D. studies.

References

Bilal, M., J. A. Shah, T. Ashfaq, S. M. H. Gardazi, A. A. Tahir, A. Pervez, H. Haroon, and Q. Mahmood. 2013. “Waste biomass adsorbents for copper removal from industrial wastewater—A review.” J. Hazard. Mater. 263 (Dec): 322–333. https://doi.org/10.1016/j.jhazmat.2013.07.071.
Blázquez, G., M. Calero, F. Hernáinz, G. Tenorio, and M. Martin-Lara. 2010. “Batch and continuous packed column studies of chromium (III) biosorption by olive stone.” Environ. Prog. Sustainable Energy 30 (4): 576–585. https://doi.org/10.1002/ep.10510.
Blázquez, G., M. A. Martín-Lara, E. Dionisio-Ruiz, G. Tenorio, and M. Calero. 2011. “Evaluation and comparison of the biosorption process of copper ions onto olive stone and pine bark.” J. Ind. Eng. Chem. 17 (5–6): 824–833. https://doi.org/10.1016/j.jiec.2011.08.003.
Blázquez, G., M. A. Martín-Lara, E. Dionisio-Ruiz, G. Tenorio, and M. Calero. 2012. “Copper biosorption by pine cone shell and thermal decomposition study of the exhausted biosorbent.” J. Ind. Eng. Chem. 18 (5): 1741–1750. https://doi.org/10.1016/j.jiec.2012.03.018.
Boehm, H. P. 1994. “Some aspects of the surface chemistry of carbon blacks and other carbons.” Carbon 32 (5): 759–769. https://doi.org/10.1016/0008-6223(94)90031-0.
Burakov, A. E., E. V. Galunin, I. V. Burakova, A. E. Kucherova, S. Agarwal, A. G. Tkachev, and V. K. Gupta. 2018. “Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review.” Ecotoxicol. Environ. Saf. 148 (Feb): 702–712. https://doi.org/10.1016/j.ecoenv.2017.11.034.
Castro, R. S. D., G. Ferreira, P. M. Padilha, M. J. Saeki, L. F. Zara, M. A. U. Martines, and G. R. Castro. 2011. “Banana peel applied to the solid phase extraction of copper and lead from river water: Preconcentration of metal ions with a fruit waste.” Ind. Eng. Chem. Res. 50 (6): 3446–3451. https://doi.org/10.1021/ie101499e.
Chao, H. P., C. C. Chang, and A. Nieva. 2014. “Biosorption of heavy metals on Citrus maxima peel, passion fruit shell, and sugarcane bagasse in a fixed-bed column.” J. Ind. Eng. Chem. 20 (5): 3408–3414. https://doi.org/10.1016/j.jiec.2013.12.027.
Chen, J. P., S. Wu, and K. H. Chong. 2003. “Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption.” Carbon 41 (10): 1979–1986. https://doi.org/10.1016/S0008-6223(03)00197-0.
De Gisi, S., G. Lofrano, M. Grassi, and M. Notarnicola. 2016. “Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review.” Sustainable Mater. Technol. 9 (Sep): 10–40. https://doi.org/10.1016/j.susmat.2016.06.002.
De Oliveira Sousa Neto, V., D. Q. Melo, T. C. De Oliveira, R. Nonato, P. Teixeira, M. A. A. Silva, and R. F. Nascimento. 2014. “Evaluation of new chemically modified coconut shell adsorbents with tannic acid for Cu (II) removal from wastewater.” J. Appl. Polym. Sci. 131 (18): 9087–9097. https://doi.org/10.1002/app.40744.
Dodson, J. R., H. L. Parker, A. Muñoz García, A. Hicken, K. Asemave, T. J. Farmer, H. He, J. H. Clark, and A. J. Hunt. 2015. “Bio-derived materials as a green route for precious & critical metal recovery and re-use.” Green Chem. 17 (4): 1951–1965. https://doi.org/10.1039/C4GC02483D.
Feng, N. C., X. Y. Guo, and S. Liang. 2010. “Enhanced Cu (II) adsorption by orange peel modified with sodium hydroxide.” Trans. Nonferrous Metals Soc. China 20 (May): 146–152. https://doi.org/10.1016/S1003-6326(10)60030-1.
Ge, Y., D. Xiao, Z. Li, and X. Cui. 2015. “Correction: Dithiocarbamate functionalized lignin for efficient removal of metallic ions and the usage of the metal-loaded bio-sorbents as potential free radical scavengers.” J. Mater. Chem. A 3 (14): 7666. https://doi.org/10.1039/C5TA90062J.
Grujicic, D., and B. Pesic. 2002. “Electrodeposition of copper: The nucleation mechanisms.” Electrochim. Acta 47 (18): 2901–2912. https://doi.org/10.1016/S0013-4686(02)00161-5.
Liu, W. J., K. Tian, H. Jiang, X. S. Zhang, H. S. Ding, and H. Q. Yu. 2012. “Selectively improving the bio-oil quality by catalytic fast pyrolysis of heavy-metal-polluted biomass: Take copper (Cu) as an example.” Environ. Sci. Technol. 46 (14): 7849–7856. https://doi.org/10.1021/es204681y.
Ma, W., P. Zong, Z. Cheng, B. Wang, and Q. Sun. 2014. “Adsorption and bio-sorption of nickel ions and reuse for 2-chlorophenol catalytic ozonation oxidation degradation from water.” J. Hazard. Mater. 266 (Feb): 19–25. https://doi.org/10.1016/j.jhazmat.2013.12.007.
Moreno-Castilla, C., J. Rivera-Utrilla, A. López-Peinado, I. Fernández-Morales, and F. López-Garzón. 1985. “Gasification reaction of a lignite char catalysed by Cr, Mn, Fe, Co, Ni, Cu and Zn in dry and wet air.” Fuel 64 (9): 1220–1223. https://doi.org/10.1016/0016-2361(85)90178-4.
Romero-Cano, L. A., H. García-Rosero, L. V. Gonzalez-Gutierrez, L. A. Baldenegro-Pérez, and F. Carrasco-Marín. 2017. “Functionalized adsorbents prepared from fruit peels: Equilibrium, kinetic and thermodynamic studies for copper adsorption in aqueous solution.” J. Cleaner Prod. 162 (Sep): 195–204. https://doi.org/10.1016/j.jclepro.2017.06.032.
Romero-Cano, L. A., L. V. González-Gutiérrez, L. A. Baldenegro-Pérez, and F. C. Carrasco-Marín. 2016. “Grapefruit peels as biosorbent: Characterization and use in batch and fixed bed column for Cu (II) uptake from wastewater.” J. Chem. Technol. Biotechnol. 92 (7): 1650–1658. https://doi.org/10.1002/jctb.5161.
Ronda, A., M. Della Zassa, M. A. Martín-Lara, M. Calero, and P. Canu. 2016. “Combustion of a Pb (II)-loaded olive tree pruning used as biosorbent.” J. Hazard. Mater. 308 (May): 285–293. https://doi.org/10.1016/j.jhazmat.2016.01.045.
Ronda, A., M. A. Martín-Lara, E. Dionisio, G. Blázquez, and M. Calero. 2013. “Effect of lead in biosorption of copper by almond shell.” J. Taiwan Inst. Chem. Eng. 44 (3): 466–473. https://doi.org/10.1016/j.jtice.2012.12.019.
Stankovi, M. N., N. S. Krstić, J. Mitrovic, S. Najdanoviċ, M. Petroviċ, D. Bojiċ, V. D. Dimitrijević, and A. L. Bojiċ. 2015. “Biosorption of copper (II) ions by methyl-sulfonated Lagenaria vulgaris shell: Kinetic, thermodynamic and desorption studies.” New J. Chem. 40 (3): 2126–2134. https://doi.org/10.1039/C5NJ02408K.
Vijayaraghavan, K., and R. Balasubramanian. 2015. “Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state-of-the-art of biosorption processes and future directions.” J. Environ. Manage. 160 (Sep): 283–296. https://doi.org/10.1016/j.jenvman.2015.06.030.
Volesky, B., J. Weber, and J. M. Park. 2003. “Continuous-flow metal biosorption in a regenerable Sargassum column.” Water Res. 37 (2): 297–306. https://doi.org/10.1016/S0043-1354(02)00282-8.
Wu, Y., H. Luo, H. Wang, L. Zhang, P. Liu, and L. Feng. 2014. “Fast adsorption of nickel ions by porous graphene oxide/sawdust composite and reuse for phenol degradation from aqueous solutions.” J. Colloid Interface Sci. 436 (Dec): 90–98. https://doi.org/10.1016/j.jcis.2014.08.068.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 146Issue 9September 2020

History

Received: Oct 24, 2019
Accepted: Apr 24, 2020
Published online: Jul 6, 2020
Published in print: Sep 1, 2020
Discussion open until: Dec 6, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Luis A. Romero-Cano, Ph.D. [email protected]
Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), Pedro Escobedo 76703, Qro, Mexico; presently, Professor and Researcher, Grupo de Investigación en Materiales y Fenómenos de Superficie, Departamento de Ciencias Biotecnológicas y Ambientales, Universidad Autónoma de Guadalajara, Av. Patria 1201, C.P. 45129 Zapopan, Jalisco, Mexico. Email: [email protected]
Grupo de Investigación en Materiales de Carbón, Facultad de Ciencias, Universidad de Granada, Av. Fuente Nueva s/n. Granada, C.P. 18071 Spain; presently, Professor, Departamento de Biología y Química, Facultad de Ciencias básicas e Ingeniería, Universidad de los Llanos, Vda. Barcelona km 12 vía Puerto López, C.P. 500017 Villavicencio, Meta, Colombia. ORCID: https://orcid.org/0000-0002-1146-392X. Email: [email protected]
Leonardo A. Baldenegro-Pérez, Ph.D. [email protected]
Principal Researcher, Centro de Ingeniería y Desarrollo Industrial (CIDESI), Querétaro 76130, Qro, Mexico. Email: [email protected]
Francisco Carrasco Marín, Ph.D. [email protected]
Professor, Grupo de Investigación en Materiales de Carbón, Facultad de Ciencias, Universidad de Granada, Av. Fuente Nueva s/n. Granada, C.P. 18071 Spain. Email: [email protected]
Linda V. González-Gutiérrez, Ph.D. https://orcid.org/0000-0003-4998-1164 [email protected]
Principal Researcher, Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), Pedro Escobedo 76703, Qro, Mexico (corresponding author). ORCID: https://orcid.org/0000-0003-4998-1164. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share