Technical Papers
Jun 11, 2020

Volatile Fatty Acid Product Spectrum as a Function of the Solids Retention Time in an Anaerobic Granular Sludge Process

Publication: Journal of Environmental Engineering
Volume 146, Issue 8

Abstract

Volatile fatty acids (VFA) may serve as building blocks for the production of chemicals and polymers. A technology enabling high-rate VFA production from carbohydrate-rich wastewater is the anaerobic granular sludge process. In this study, the characteristics of an anaerobic granular sludge process fermenting glucose was evaluated at different solid retention times (SRT). A lab-scale anaerobic sequencing batch reactor fed with 6  g·L1 glucose was operated at a pH of 5.5 and at SRT values of 1–2, 10–20, and 40–50 days and operated in total for 215 days. A low sludge volume index (SVI) of 1,144  mL·gTSS1 allowed for the high SRT and high volatile suspended solid (VSS) concentration that reached 59  gVSS·L1. This high VSS concentration enabled a glucose consumption rate of 1,100  gCOD·L1·day1 at an SRT of 40–50 days. Two product spectra were obtained: (1) a propionate:acetate mixture with a ratio of 2.051 (molpropionate:molacetate) produced at an SRT of 40–50 days; and (2) an acetate dominated product spectrum was obtained at 1–2 days and 10–20 days SRT (0.71–0.75 molacetate·molVFA1). Overall, a high VFA yield between 0.77 and 0.79 was obtained throughout all enrichments. This work demonstrates that high-rate VFA production combining high yields and low solid concentrations in the effluent technologically can be achieved. This work contributes to the implementation of waste-based production of VFA using anaerobic granular sludge.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The financial support from the Dutch Applied Science foundation (NWO-TTW) and Paques BV through the VFA-platform program (Project No. 12998) is gratefully acknowledged. The authors would like to thank Ben Abbas for the microbial community structure related work.

References

Agler, M. T., B. A. Wrenn, S. H. Zinder, and L. T. Angenent. 2011. “Waste to bioproduct conversion with undefined mixed cultures: The carboxylate platform.” Trends Biotechnol. 29 (2): 70–78. https://doi.org/10.1016/j.tibtech.2010.11.006.
Albuquerque, M. G. E., M. Eiroa, C. Torres, B. R. Nunes, and M. A. M. Reis. 2007. “Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses.” J. Biotechnol. 130 (4): 411–421. https://doi.org/10.1016/j.jbiotec.2007.05.011.
Bengtsson, S., J. Hallquist, A. Werker, and T. Welander. 2008. “Acidogenic fermentation of industrial wastewaters: Effects of chemostat retention time and pH on volatile fatty acids production.” Biochem. Eng. J. 40 (3): 492–499. https://doi.org/10.1016/j.bej.2008.02.004.
Bolaji, I. O., and D. Dionisi. 2017. “Acidogenic fermentation of vegetable and salad waste for chemicals production: Effect of pH buffer and retention time.” J. Environ. Chem. Eng. 5 (6): 5933–5943. https://doi.org/10.1016/j.jece.2017.11.001.
Clesceri, L. S., A. E. Greenberg, and A. D. Eaton. 1999. Standard methods for the examination of water and wastewater. 20th ed. Washtington, DC: American Public Health Association.
Crabbendam, P. M., O. M. Neijssel, and D. W. Tempest. 1985. “Metabolic and energetic aspects of the growth of Clostridium butyricum on glucose in chemostat culture.” Arch. Microbiol. 142 (4): 375–382. https://doi.org/10.1007/BF00491907.
Dabrock, B., H. Bahl, and G. Gottschalk. 1992. “Parameters affecting solvent production by Clostridium pasteurianum.” Appl. Environ. Microbiol. 58 (4): 1233–1239. https://doi.org/10.1128/AEM.58.4.1233-1239.1992.
Das, D., and T. N. Veziroglu. 2008. “Advances in biological hydrogen production processes.” Int. J. Hydrogen Energy 33 (21): 6046–6057. https://doi.org/10.1016/j.ijhydene.2008.07.098.
De Kok, S., J. Meijer, M. C. M. Van Loosdrecht, and R. Kleerebezem. 2013. “Impact of dissolved hydrogen partial pressure on mixed culture fermentations.” Appl. Microbiol. Biotechnol. 97 (6): 2617–2625. https://doi.org/10.1007/s00253-012-4400-x.
de Kreuk, M. K., M. Pronk, and M. C. M. Van Loosdrecht. 2005. “Formation of aerobic granules and conversion processes in an aerobic granular sludge reactor at moderate and low temperatures.” Water Res. 39 (18): 4476–4484. https://doi.org/10.1016/j.watres.2005.08.031.
de Kreuk, M. K., and M. C. M. van Loosdrecht. 2004. “Selection of slow growing organisms as a means for improving aerobic granular sludge stability.” Water Sci. Technol. 49 (11–12): 9–17. https://doi.org/10.2166/wst.2004.0792.
de Vries, W., and A. H. Stouthamer. 1967. “Pathway of glucose fermentation in relation to the taxonomy of bifidobacteria.” J. Bacteriol. 93 (2): 574–576. https://doi.org/10.1128/JB.93.2.574-576.1967.
Falsen, E., N. Weiss, E. Inganäs, M. D. Collins, M. Drancourt, A. L. McCartney, and L. Hoyles. 2015. “Bifidobacterium scardovii sp. nov., from human sources.” Int. J. Syst. Evol. Microbiol. 52 (3): 995–999.
Gonzalez-Garcia, R., T. McCubbin, L. Navone, C. Stowers, L. Nielsen, and E. Marcellin. 2017. “Microbial propionic acid production.” Fermentation 3 (2): 21. https://doi.org/10.3390/fermentation3020021.
Grotenhuis, J. T. C., J. C. Kissel, C. M. Plugge, A. J. M. Stams, and A. J. B. Zehnder. 1991. “Role of substrate concentration in particle size distribution of methanogenic granular sludge in UASB reactors.” Water Res. 25 (1): 21–27. https://doi.org/10.1016/0043-1354(91)90094-7.
Hallenbeck, P. C., and D. Ghosh. 2009. “Advances in fermentative biohydrogen production: The way forward?” Trends Biotechnol. 27 (5): 287–297. https://doi.org/10.1016/j.tibtech.2009.02.004.
Holtzapple, M. T., and C. B. Granda. 2009. “Carboxylate platform: The mixalco process part 1: Comparison of three biomass conversion platforms.” Appl. Biochem. Biotechnol. 156 (1–3): 95–106. https://doi.org/10.1007/s12010-008-8466-y.
Kleerebezem, R., B. Joosse, R. Rozendal, and M. C. M. Van Loosdrecht. 2015. “Anaerobic digestion without biogas?” Rev. Environ. Sci. Biotechnol. 14 (4): 787–801. https://doi.org/10.1007/s11157-015-9374-6.
Lanjekar, V. B., N. P. Marathe, V. V. Ramana, Y. S. Shouche, and D. R. Ranade. 2014. “Megasphaera indica sp. nov., an obligate anaerobic bacteria isolated from human faeces.” Int. J. Syst. Evol. Microbiol. 64 (Pt 7): 2250–2256. https://doi.org/10.1099/ijs.0.059816-0.
Lettinga, G., A. F. M. van Velsen, S. W. Hobma, W. de Zeeuw, and A. Klapwijk. 1980. “Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment.” Biotechnol. Bioeng. 22 (4): 699–734. https://doi.org/10.1002/bit.260220402.
Lin, P. Y., L. M. Whang, Y. R. Wu, W. J. Ren, C. J. Hsiao, S. L. Li, and J. S. Chang. 2007. “Biological hydrogen production of the genus Clostridium: Metabolic study and mathematical model simulation.” Int. J. Hydrogen Energy 32 (12): 1728–1735. https://doi.org/10.1016/j.ijhydene.2006.12.009.
Marang, L., Y. Jiang, M. C. M. van Loosdrecht, and R. Kleerebezem. 2013. “Butyrate as preferred substrate for polyhydroxybutyrate production.” Bioresour. Technol. 142 (Aug): 232–239. https://doi.org/10.1016/j.biortech.2013.05.031.
Paikt, H. D., and B. A. Glatz. 1997. “Enhanced bacteriocin production by Propionibacterium thoenii in fed-batch fermentation.” J. Food Prot. 60 (12): 1529–1533. https://doi.org/10.4315/0362-028X-60.12.1529.
Pokusaeva, K., G. F. Fitzgerald, and D. Van Sinderen. 2011. “Carbohydrate metabolism in Bifidobacteria.” Genes Nutr. 6 (3): 285–306. https://doi.org/10.1007/s12263-010-0206-6.
Pronk, M., M. K. de Kreuk, B. de Bruin, P. Kamminga, R. Kleerebezem, and M. C. M. van Loosdrecht. 2015. “Full scale performance of the aerobic granular sludge process for sewage treatment.” Water Res. 84 (Nov): 207–217.
Rittmann, B. E., L. Crawford, and C. K. Tuck. 1986. “In situ determination of kinetic parameters for biofilms: Isolation and characterization of oligotrophic biofilms.” Biotechnol. Bioeng. 28 (11): 1753–1760.
Rombouts, J. L., G. Mos, D. G. Weissbrodt, R. Kleerebezem, and M. C. M. Van Loosdrecht. 2019. “Diversity and metabolism of xylose and glucose fermenting microbial communities in sequencing batch or continuous culturing.” FEMS Microbiol. Ecol. 95 (2): 1–12. https://doi.org/10.1093/femsec/fiy233.
Tamis, J., B. M. Joosse, M. C. M. van Loosdrecht, and R. Kleerebezem. 2015. “High-rate volatile fatty acid (VFA) production by a granular sludge process at low pH.” Biotechnol. Bioeng. 112 (11): 2248–2255. https://doi.org/10.1002/bit.25640.
Tamis, J., K. Lužkov, Y. Jiang, M. C. M. Van Loosdrecht, and R. Kleerebezem. 2014. “Enrichment of plasticicumulans acidivorans at pilot-scale for PHA production on industrial wastewater.” J. Biotechnol. 192 (Dec): 161–169. https://doi.org/10.1016/j.jbiotec.2014.10.022.
Tamis, J., M. Mulders, H. Dijkman, R. Rozendal, M. C. M. van Loosdrecht, and R. Kleerebezem. 2018. “Pilot-scale polyhydroxyalkanoate production from paper mill wastewater: Process characteristics and identification of bottlenecks for full-scale implementation.” J. Environ. Eng. 144 (10): 04018107. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001444.
Temudo, M. F., R. Kleerebezem, and M. van Loosdrecht. 2007. “Influence of the pH on (open) mixed culture fermentation of glucose: A chemostat study.” Biotechnol. Bioeng. 98 (1): 69–79. https://doi.org/10.1002/bit.21412.
Temudo, M. F., G. Muyzer, R. Kleerebezem, and M. C. M. Van Loosdrecht. 2008. “Diversity of microbial communities in open mixed culture fermentations: Impact of the pH and carbon source.” Appl. Microbiol. Biotechnol. 80 (6): 1121–1130. https://doi.org/10.1007/s00253-008-1669-x.
Ventura, M., S. Delgado, C. Milani, A. O’callaghan, and D. Van Sinderen. 2016. “Bifidobacteria and their role as members of the human gut microbiota.” Front. Microbiol. 1 (Jun): 925.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 146Issue 8August 2020

History

Received: Dec 18, 2019
Accepted: Mar 24, 2020
Published online: Jun 11, 2020
Published in print: Aug 1, 2020
Discussion open until: Nov 11, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate, Dept. of Biotechnology, Delft Univ. of Technology, Van der Maasweg 9, Delft, HZ 2629, Netherlands (corresponding author). ORCID: https://orcid.org/0000-0003-4810-5656. Email: [email protected]
Ph.D. Candidate, Wetsus, Oostergoweg 9, Leeuwarden, MA 8911, Netherlands. ORCID: https://orcid.org/0000-0002-0531-7977
Gerben Roelandt Stouten
Ph.D. Candidate, Dept. of Biotechnology, Delft Univ. of Technology, Van der Maasweg 9, Delft, 2629 HZ, Netherlands.
Jelmer Tamis
Process Specialist, Paques BV, Tjalke de Boerstritte 24, Balk, EL 8561, Netherlands.
Mario Pronk
Technology and Project Manager R&D, Royal HaskoningDHV, Laan 1914 35, Amersfoort, 3800 AL, Netherlands.
Robbert Kleerebezem
Associate Professor, Dept. of Biotechnology, Delft Univ. of Technology, Van der Maasweg 9, Delft, 2629 HZ, Netherlands.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share