Technical Papers
Apr 23, 2020

Polyvinylidene Fluoride and Titanium Dioxide Ultrafiltration Photocatalytic Membrane: Fabrication, Morphology, and Its Application in Textile Wastewater Treatment

Publication: Journal of Environmental Engineering
Volume 146, Issue 7

Abstract

Effluent from textile mills is considered one of the most polluted among all industrial effluents because it contains a large amount of toxic dyes that are released during the dyeing processes. Conventional methods have been found to be inefficient in removing those toxic synthetic dyes from the effluent. Entrapped photocatalytic membrane (EPM) is one of the recently established technologies that has very good potential in treating textile effluent. EPM combines photocatalysis, an advanced oxidation process, and membrane separation in a single unit to treat the effluent. In this paper, fabrication and characterization of an ultrafiltration EPM composed of polyvinylidene fluoride (PVDF) and titanium dioxide (TiO2) was conducted. Different concentrations of TiO2 (0%, 1%, 2%, and 3% by weight) were used to fabricate EPMs. The increase in the concentration of TiO2 changed the morphological behavior of the membrane, which was evaluated using the results obtained from scanning electron microscopy (SEM), energy dispersive X-ray (EDX), atomic force microscopy (AFM), contact angle, and tensile stress studies. EPM was employed in a photocatalytic reactor to remove Remazol Turquoise Blue dye from synthetic textile effluent. The incorporation of TiO2 enhanced the performance of the membrane by providing high photocatalytic activity under ultraviolet (UV) illumination. After 4.5 h of operation of the EPM containing 3% TiO2, the removal of total organic carbon (TOC) and color were 91% and 93%, respectively.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors would like to thank Dr. Harish Ravishankar for his assistance in membrane fabrication. The first author acknowledges RMIT University for providing financial support to her through an Australian Government Research Training Program Scholarship.

References

Abdullah, M. A., H. Mukhtar, H. A. Mannan, Y. Y. Fong, and M. S. Shaharun. 2017. “Polyethersulfone/polyvinyl acetate blend membrane incorporated with TiO2 nanoparticles for CO2/CH4 gas separation.” Malaysian J. Fundam. Appl. Sci. 13 (4): 774–777. https://doi.org/10.11113/mjfas.v13n4.923.
Ahmad, A. L., W. Y. Pang, Z. M. H. M. Shafie, and N. D. Zaulkiflee. 2019. “PES/PVP/TiO2 mixed matrix hollow fiber membrane with antifouling properties for humic acid removal.” J. Water Process Eng. 31 (Oct): 100827. https://doi.org/10.1016/j.jwpe.2019.100827.
Ajmal, A., I. Majeed, R. N. Malik, H. Idriss, and M. A. Nadeem. 2014. “Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: A comparative overview.” RSC Adv. 4 (70): 37003–37026. https://doi.org/10.1039/C4RA06658H.
Al-Gharabli, S., M. O. Mavukkandy, J. Kujawa, S. P. Nunes, and H. A. Arafat. 2017. “Activation of PVDF membranes through facile hydroxylation of the polymeric dope.” J. Mater. Res. 32 (22): 4219–4231. https://doi.org/10.1557/jmr.2017.403.
Bae, T. H., and T. M. Tak. 2005. “Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration.” J. Membr. Sci. 249 (1–2): 1–8. https://doi.org/10.1016/j.memsci.2004.09.008.
Bisschops, I., and H. Spanjers. 2003. “Literature review on textile wastewater characterisation.” Environ. Technol. 24 (11): 1399–1411. https://doi.org/10.1080/09593330309385684.
Carrere, H., C. Dumas, A. Battimelli, D. J. Batstone, J. P. Delgenes, J. P. Steyer, and I. Ferrer. 2010. “Pretreatment methods to improve sludge anaerobic degradability: A review.” J. Hazard. Mater. 183 (1–3): 1–15. https://doi.org/10.1016/j.jhazmat.2010.06.129.
Choi, H., E. Stathatos, and D. D. Dionysiou. 2007. “Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems.” Desalination 202 (1–3): 199–206. https://doi.org/10.1016/j.desal.2005.12.055.
Damodar, R. A., S. J. You, and H. H. Chou. 2009. “Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes.” J. Hazard. Mater. 172 (2–3): 1321–1328. https://doi.org/10.1016/j.jhazmat.2009.07.139.
Deshmukh, S. P., and K. Li. 1998. “Effect of ethanol composition in water coagulation bath on morphology of PVDF hollow fibre membranes.” J. Membr. Sci. 150 (1): 75–85. https://doi.org/10.1016/S0376-7388(98)00196-3.
Elwakeel, K., A. El-Bindary, A. Ismail, and A. Morshidy. 2016. “Sorptive removal of Remazol Brilliant Blue R from aqueous solution by diethylenetriamine functionalized magnetic macro-reticular hybrid material.” RSC Adv. 6 (27): 22395–22410. https://doi.org/10.1039/C5RA26508H.
Grau, P. 1991. “Textile-industry wastewaters treatment.” Water Sci. Technol. 24 (1): 97–103. https://doi.org/10.2166/wst.1991.0015.
Guo, J., and K. Jeonghwan. 2017. “Modifications of polyethersulfone membrane by doping sulfatedTiO2 nanoparticles for improving anti-fouling property in wastewater treatment.” RSC Adv. 7 (54): 33822–33828. https://doi.org/10.1039/C7RA06406C.
Gupta, S., and M. Tripathi. 2011. “A review of TiO2 nanoparticles.” Chin. Sci. Bull. 56 (16): 1639–1657. https://doi.org/10.1007/s11434-011-4476-1.
Hir, Z. A. M., P. Moradihamedani, A. H. Abdullah, and M. A. Mohamed. 2017. “Immobilization of TiO2 into polyethersulfone matrix as hybrid film photocatalyst for effective degradation of methyl orange dye.” Mater. Sci. Semicond. Process. 57 (Jan): 157–165. https://doi.org/10.1016/j.mssp.2016.10.009.
Homayoonfal, M., A. Akbari, and M. R. Mehrnia. 2010. “Preparation of polysulfone nanofiltration membranes by UV-assisted grafting polymerization for water softening.” Desalination 263 (1–3): 217–225. https://doi.org/10.1016/j.desal.2010.06.062.
Hou, D. Y., G. H. Dai, J. Wang, H. Fan, L. Zhang, and Z. K. Luan. 2012. “Preparation and characterization of PVDF/nonwoven fabric flat-sheet composite membranes for desalination through direct contact membrane distillation.” Sep. Purif. Technol. 101 (Nov): 1–10. https://doi.org/10.1016/j.seppur.2012.08.031.
Khataee, A. R., and M. B. Kasiri. 2010. “Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes.” J. Mol. Catal. A: Chem. 328 (1–2): 8–26. https://doi.org/10.1016/j.molcata.2010.05.023.
Kim, J. H., and K. H. Lee. 1998. “Effect of peg additive on membrane formation by phase inversion.” J. Membr. Sci. 138 (2): 153–163. https://doi.org/10.1016/S0376-7388(97)00224-X.
Kumari, P., N. Bahadur, and L. F. Dumée. 2020. “Photo-catalytic membrane reactors for the remediation of persistent organic pollutants: A review.” Sep. Purif. Technol. 230 (Jan): 115878. https://doi.org/10.1016/j.seppur.2019.115878.
Li, J. F., Z. L. Xu, H. Yang, L. Y. Yu, and M. Liu. 2009. “Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane.” Appl. Surf. Sci. 255 (9): 4725–4732. https://doi.org/10.1016/j.apsusc.2008.07.139.
Liao, C. J., J. Q. Zhao, P. Yu, H. Tong, and Y. B. Luo. 2012. “Synthesis and characterization of low content of different SiO2 materials composite poly (vinylidene fluoride) ultrafiltration membranes.” Desalination 285 (Jan): 117–122. https://doi.org/10.1016/j.desal.2011.09.042.
Lin, S. H., and C. F. Peng. 1996. “Continuous treatment of textile wastewater by combined coagulation, electrochemical oxidation and activated sludge.” Water Res. 30 (3): 587–592. https://doi.org/10.1016/0043-1354(95)00210-3.
Liu, F., N. A. Hashim, Y. T. Liu, M. R. M. Abed, and K. Li. 2011. “Progress in the production and modification of PVDF membranes.” J. Membr. Sci. 375 (1–2): 1–27. https://doi.org/10.1016/j.memsci.2011.03.014.
Malesic-Eleftheriadou, N., E. N. Evgenidou, G. Z. Kyzas, D. N. Bikiaris, and D. A. Lambropoulou. 2019. “Removal of antibiotics in aqueous media by using new synthesized bio-based poly(ethylene terephthalate)TiO2 photocatalysts.” Chemosphere 234 (Nov): 746–755. https://doi.org/10.1016/j.chemosphere.2019.05.239.
Marchis, T., P. Avetta, A. Bianco-Prevot, D. Fabbri, G. Viscardi, and E. Laurenti. 2011. “Oxidative degradation of Remazol Turquoise Blue G 133 by soybean peroxidase.” J. Inorg. Biochem. 105 (2): 321–327. https://doi.org/10.1016/j.jinorgbio.2010.11.009.
Mericq, J. P., J. Mendret, S. Brosillon, and C. Faur. 2015. “High performance PVDFTiO2 membranes for water treatment.” Chem. Eng. Sci. 123 (Feb): 283–291. https://doi.org/10.1016/j.ces.2014.10.047.
Molinari, R., L. Palmisano, V. Loddo, S. Mozia, and A. W. Morawski. 2013. “Photocatalytic membrane reactors: Configurations, performance and applications in water treatment and chemical production.” In Vol. 2 of Handbook of membrane reactors, edited by A. Basile, 808–845. Sawston, UK: Woodhead.
Molinari, R., F. Pirillo, M. Falco, V. Loddo, and L. Palmisano. 2004. “Photocatalytic degradation of dyes by using a membrane reactor.” Chem. Eng. Process. 43 (9): 1103–1114. https://doi.org/10.1016/j.cep.2004.01.008.
Ngang, H. P., B. S. Ooi, A. L. Ahmad, and S. O. Lai. 2012. “Preparation of PVDFTiO2 mixed-matrix membrane and its evaluation on dye adsorption and UV-cleaning properties.” Chem. Eng. J. 197 (Jul): 359–367. https://doi.org/10.1016/j.cej.2012.05.050.
Nor, N. A. M., J. Jaafar, A. F. Ismail, M. A. Mohamed, M. A. Rahman, M. H. D. Othman, W. J. Lau, and N. Yusof. 2016. “Preparation and performance of PVDF-based nanocomposite membrane consisting of TiO2 nanofibers for organic pollutant decomposition in wastewater under UV irradiation.” Desalination 391 (Aug): 89–97. https://doi.org/10.1016/j.desal.2016.01.015.
Rajeswari, A., E. J. S. Christy, G. I. C. Mary, K. Jayaraj, and A. Pius. 2019. “Cellulose acetate based biopolymeric mixed matrix membranes with various nanoparticles for environmental remediation-a comparative study.” J. Environ. Chem. Eng. 7 (4): 103278. https://doi.org/10.1016/j.jece.2019.103278.
Ravishankar, H., F. Roddick, D. Navaratna, and V. Jegatheesan. 2018. “Preparation, characterisation and critical flux determination of graphene oxide blended polysulfone (PSf) membranes in an MBR system.” J. Environ. Manage. 213 (May): 168–179. https://doi.org/10.1016/j.jenvman.2018.02.063.
Rawindran, H., J. W. Lim, P. S. Goh, M. N. Subramaniam, A. F. Ismail, N. M. R. B. N. M. Daud, and M. R. D. Arzhandi. 2019. “Simultaneous separation and degradation of surfactants laden in produced water using PVDF/TiO2 photocatalytic membrane.” J. Cleaner Prod. 221 (Jun): 490–501. https://doi.org/10.1016/j.jclepro.2019.02.230.
Razmjou, A., J. Mansouri, and V. Chen. 2011. “The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes.” J. Membr. Sci. 378 (1–2): 73–84. https://doi.org/10.1016/j.memsci.2010.10.019.
Robinson, T., G. McMullan, R. Marchant, and P. Nigam. 2001. “Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative.” Bioresour. Technol. 77 (3): 247–255. https://doi.org/10.1016/S0960-8524(00)00080-8.
Sarasa, J., M. P. Roche, M. P. Ormad, E. Gimeno, A. Puig, and J. L. Ovelleiro. 1998. “Treatment of a wastewater resulting from dyes manufacturing with ozone and chemical coagulation.” Water Res. 32 (9): 2721–2727. https://doi.org/10.1016/S0043-1354(98)00030-X.
Shi, F. M., Y. X. Ma, J. Ma, P. P. Wang, and W. X. Sun. 2012. “Preparation and characterization of PVDF/TiO2 hybrid membranes with different dosage of nanoTiO2.” J. Membr. Sci. 389 (Feb): 522–531. https://doi.org/10.1016/j.memsci.2011.11.022.
Song, H., J. Shao, Y. He, B. Liu, and X. Zhong. 2012. “Natural organic matter removal and flux decline with PEGTiO2doped PVDF membranes by integration of ultrafiltration with photocatalysis.” J. Membr. Sci. 405 (Jul): 48–56. https://doi.org/10.1016/j.memsci.2012.02.063.
Vatanpour, V., S. S. Madaeni, A. R. Khataee, E. Salehi, S. Zinadini, and H. A. Monfared. 2012. “TiO2 embedded mixed matrix PES nanocomposite membranes: Influence of different sizes and types of nanoparticles on antifouling and performance.” Desalination 292 (Apr): 19–29. https://doi.org/10.1016/j.desal.2012.02.006.
Xu, Z. W., T. F. Wu, J. Shi, K. Y. Teng, W. Wang, M. J. Ma, J. Li, X. M. Qian, C. Y. Li, and J. T. Fan. 2016. “Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment.” J. Membr. Sci. 520 (Dec): 281–293. https://doi.org/10.1016/j.memsci.2016.07.060.
Yang, Y., H. Zhang, P. Wang, Q. Zheng, and J. Li. 2007. “The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane.” J. Membr. Sci. 288 (1–2): 231–238. https://doi.org/10.1016/j.memsci.2006.11.019.
Zhang, X. W., D. K. Wang, D. R. S. Lopez, and J. C. D. da Costa. 2014. “Fabrication of nanostructured TiO2 hollow fiber photocatalytic membrane and application for wastewater treatment.” Chem. Eng. J. 236 (Jan): 314–322. https://doi.org/10.1016/j.cej.2013.09.059.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 146Issue 7July 2020

History

Received: Jul 20, 2019
Accepted: Dec 9, 2019
Published online: Apr 23, 2020
Published in print: Jul 1, 2020
Discussion open until: Sep 23, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Shruti Sakarkar [email protected]
Ph.D. Student, School of Engineering, RMIT Univ., Melbourne, VIC 3000, Australia. Email: [email protected]
Shobha Muthukumaran [email protected]
Associate Professor of Environmental Engineering, College of Engineering and Science, Victoria Univ., Melbourne, VIC 8001, Australia. Email: [email protected]
Professor of Environmental Engineering and Director of Water, Effective Technologies and Tools Research Centre, School of Engineering, RMIT Univ., Melbourne, VIC 3000, Australia (corresponding author). ORCID: https://orcid.org/0000-0002-8038-4854. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share