Abstract

Methane (CH4), a potent greenhouse gas, is globally available as both natural gas and biogas for residential, commercial, and industrial use. Though an excellent source of heat and power, CH4 is often flared or released into the air due to the lack of economically attractive end use options. One promising option is its use as a low-cost feedstock for growth of CH4-oxidizing microorganisms (methanotrophs) and production of single cell protein, methanol, bioplastics, and other bioproducts. However, such opportunities are impeded by the low aqueous solubility of CH4 and concerns about explosion hazards. To enable oxidation of CH4 at low levels, methane monooxygenase enzymes have evolved high affinities for CH4, as reflected in low half-saturation coefficients (Ks<0.16  mg/L). Specific rates of CH4 consumption can therefore become maximum at low levels of dissolved CH4. For such kinetics, high volumetric productivities can be achieved by increasing biomass concentrations. Historically, this has been achieved by pressurizing CH4 feedstock. New methods include coupling high media recirculation rates with in-line mass transfer devices (static mixers, gas permeable membranes); recirculating fluid contactors, such as polymers or oils; and modifying fluid media with hydrophilic additives, such as electrolytes and alcohols. These new methods ensure that a flammable mixture is not created and provide many opportunities for innovation.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code generated or used during the study are available from the corresponding author by request, such as the script for assessment of rate limitations.

Acknowledgments

Primary support for this work was supported by the Center for the Utilization of Biological Engineering in Space (CUBES) through NASA Award No. 1208377-1-RFATP. J. L. Meraz was supported by the Stanford Bio-X Bowes Graduate Student Fellowship. Additional support was provided by the Stanford Global Development and Poverty Initiative Exploratory Project Award (Award No. 703 1182082-1-GWMOZ). S. H. El Abbadi was supported by the Stanford Interdisciplinary Graduate Fellowship. K. Dubrawski acknowledges support from the Canada Natural Sciences and Engineering Research Council Postdoctoral Fellowship Award. We thank Dr. Chungheon Shin for review of the manuscript and many helpful suggestions.

References

Acha, V., J. Alba, and F. Thalasso. 2002. “The absolute requirement for carbon dioxide for aerobic methane oxidation by a methanotrophic-heterotrophic soil community of bacteria.” Biotechnol. Lett 24 (9): 675–679. https://doi.org/10.1023/A:1015265530501.
Alrashed, W., J. Lee, J. Park, B. E. Rittmann, Y. Tang, J. D. Neufeld, and H. S. Lee. 2018. “Hypoxic methane oxidation coupled to denitrification in a membrane biofilm.” Chem. Eng. J. 348 (Sep): 745–753. https://doi.org/10.1016/j.cej.2018.04.202.
AlSayed, A., A. Fergala, and A. Eldyasti. 2018a. “Sustainable biogas mitigation and value-added resources recovery using methanotrophs intergrated into wastewater treatment plants.” Rev. Environ. Sci. Biotechnol. 17 (2): 351–393. https://doi.org/10.1007/s11157-018-9464-3.
AlSayed, A., A. Fergala, S. Khattab, and A. Eldyasti. 2018b. “Kinetics of type I methanotrophs mixed culture enriched from waste activated sludge.” Biochem. Eng. J. 132 (Apr): 60–67. https://doi.org/10.1016/j.bej.2018.01.003.
Al Taweel, A. M., and Q. Shah, and B. Aufderheide. 2012. “Effect of mixing on microorganism growth in loop bioreactors.” Int. J. Chem. Eng. 2012 (1): 1–12.
Anderson, J. E., and P. L. McCarty. 1996. “Effect of three chlorinated ethenes on growth rates for a methanotrophic mixed culture.” Environ. Sci. Technol. 30 (12): 3517–3524. https://doi.org/10.1021/es960187n.
Baani, M., and W. Liesack. 2008. “Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2.” Proc. National Acad. Sci. 105 (29): 10203–10208. https://doi.org/10.1073/pnas.0702643105.
Bowman, J. 2006. The prokaryotes: The methanotrophs—The families Methylococcaceae and Methylocystaceae, edited by M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, and E. Stackebrandt. New York: Springer.
Brandon, A. M., and C. S. Criddle. 2019. “Can biotechnology turn the tide on plastics?” Current Opinions Biotechnol. 57: 160–166. https://doi.org/10.1016/j.copbio.2019.03.020.
Cáceres, M., A. D. Dorado, J. C. Gentina, and G. Aroca. 2017. “Oxidation of methane in biotrickling filters inoculated with methanotrophic bacteria.” Environ. Sci. Pollut. Res. 24 (33): 25702–25712. https://doi.org/10.1007/s11356-016-7133-z.
Casey, E., S. Rishell, B. Glennon, and G. Hamer. 2004a. “Engineering aspects of a mixed methanotrophic culture in a membrane-aerated biofilm reactor.” Water Sci. Technol. 49 (11–12): 255–262. https://doi.org/10.2166/wst.2004.0855.
Casey, E., R. Susan, B. Glennon, and G. Hamer. 2004b. “Characteristics of a methanotrophic culture in a membrane-aerated biofilm reactor characteristics of a methanotrophic culture in a membrane-aerated biofilm reactor.” Biotechnol. Progr. 20 (4): 1082–1090. https://doi.org/10.1021/bp049902k.
Chang, W. K., and C. S. Criddle. 1997. “Experimental evaluation of a model for cometabolism: Prediction of simultaneous degradation of trichloroethylene and methane by a methanotrophic mixed culture.” Biotechnol. Bioeng. 56 (5): 492–501. https://doi.org/10.1002/(SICI)1097-0290(19971205)56:5%3C492::AID-BIT3%3E3.0.CO;2-D.
Chen, H., L. Zhao, S. Hu, Z. Yuan, and J. Guo. 2018. “High-rate production of short-chain fatty acids from methane in a mixed-culture membrane biofilm reactor.” Environ. Sci. Technol. Lett. 5 (11): 662–667. https://doi.org/10.1021/acs.estlett.8b00460.
Chen, Y., B. Han, H. Jiang, J. C. Murrell, T. Su, Z. Gou, X. Li, X.-H. Xing, and H. Wu. 2009. “Paraffin oil as a ‘methane vector’ for rapid and high cell density cultivation of Methylosinus trichosporium OB3b.” Appl. Microbiol. Biotechnol. 83 (4): 669–677. https://doi.org/10.1007/s00253-009-1866-2.
Chistoserdova, L. 2018. “Applications of methylotrophs: Can single carbon be harnessed for biotechnology?” Curr. Opin. Biotechnol. 50: 189–194. https://doi.org/10.1016/j.copbio.2018.01.012.
Clapp, L. W., J. M. Regan, F. Ali, J. D. Newman, J. K. Park, and D. R. Noguera. 1999. “Activity, structure, and stratification of membrane-attached methanotrophic biofilms cometabolically degrading trichloroethylene.” Water Sci. Technol. 39 (7): 153–161. https://doi.org/10.2166/wst.1999.0351.
Conrado, R. J., and R. Gonzalez. 2014. “Envisioning the bioconversion of methane to liquid fuels.” Science 343 (6171): 621–623. https://doi.org/10.1126/science.1246929.
Crépin, L., E. Lombard, and S. E. Guillouet. 2016. “Metabolic engineering of Cupriavidus necator for heterotrophic and autotrophic alka(e)ne production.” Metab. Eng. 37: 92–101. https://doi.org/10.1016/j.ymben.2016.05.002.
Criddle, C. S., L. M. Alvarez, and P. L. McCarty. 1991. “Microbial processes in porous media.” In Transport processes in porous media, edited by J. Bear and M. Corapcioglu, 639–691. Kluwer Academic Publishers.
Crowther, G. J., G. Kosály, and M. E. Lidstrom. 2008. “Formate as the main branch point for methylotrophic metabolism in Methylobacterium extorquens AM1.” J. Bacteriol. 190 (14): 5057–5062. https://doi.org/10.1128/JB.00228-08.
Cussler, E. 2009. Diffusion: Mass transfer in fluid systems. New York: Cambridge University Press.
Díaz, I., C. Pérez, N. Alfaro, and F. Fdz-Polanco. 2015. “A feasibility study on the bioconversion of CO2 and H2 to biomethane by gas sparging through polymeric membranes.” Bioresour. Technol. 185 (Jun): 246–253. https://doi.org/10.1016/j.biortech.2015.02.114.
Duan, C., M. Luo, and X. Xing. 2011. “High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b.” Bioresour. Technol. 102 (15): 7349–7353. https://doi.org/10.1016/j.biortech.2011.04.096.
El Abbadi, S., and C. S. Criddle. 2019. “Engineering the dark food chain.” Environ. Sci. Technol. 53 (5): 2273–2287. https://doi.org/10.1021/acs.est.8b04038.
Fei, Q., M. T. Guarnieri, L. Tao, L. M. L. Laurens, N. Dowe, and P. T. Pienkos. 2014. “Bioconversion of natural gas to liquid fuel: Opportunities and challenges.” Biotechnol. Adv. 32 (3): 596–614. https://doi.org/10.1016/j.biotechadv.2014.03.011.
Glass, J. B., and V. J. Orphan. 2012. “Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide.” Front. Microbiol. 3: 1–20. https://doi.org/10.3389/fmicb.2012.00061.
Graham, D. W., J. A. Chaudhary, R. S. Hanson, and R. G. Arnold. 1993. “Factors affecting competition between type I and type II methanotrophs in two-organism, continuous-flow reactors.” Microb. Ecol. 25 (1): 1–17. https://doi.org/10.1007/BF00182126.
Hanson, R. S., and T. E. Hanson. 1996. “Methanotrophic bacteria.” Microbiol. Rev. 60 (2): 439–471. https://doi.org/10.1128/MMBR.60.2.439-471.1996.
Haynes, C. A., and R. Gonzalez. 2014. “Rethinking biological activation of methane and conversion to liquid fuels.” Nat. Chem. Biol. 10 (5): 331–339. https://doi.org/10.1038/nchembio.1509.
Ho, W. W., and K. K. Sirkar., eds. 2002. Membrane handbook. New York: Springer.
Ishizaki, A., K. Tanaka, and N. Taga. 2001. “Microbial production of poly-D-3-hydroxybutyrate from CO2.” Appl. Microbiol. Biotechnol. 57 (1–2): 6–12. https://doi.org/10.1007/s002530100775.
Jang, N., M. Yasin, H. Kang, Y. Lee, G. W. Park, S. Park, and I. S. Chang. 2018. “Bubble coalescence suppression driven carbon monoxide (CO)-water mass transfer increase by electrolyte addition in a hollow fiber membrane bioreactor (HFMBR) for microbial CO conversion to ethanol.” Bioresour. Technol. 263 (Apr): 375–384. https://doi.org/10.1016/j.biortech.2018.05.012.
Jiang, H., Y. Chen, J. C. Murrell, P. Jiang, C. Zhang, X. H. Xing, and T. J. Smith. 2011. “Methanotrophs: Multifunctional bacteria with promising applications in environmental bioengineering.” Compr. Biotechnol. 6 (3): 249–262. https://doi.org/10.1016/j.bej.2010.01.003.
Kampman, C., H. Temmink, T. L. G. Hendrickx, G. Zeeman, and C. J. N. Buisman. 2014. “Enrichment of denitrifying methanotrophic bacteria from municipal wastewater sludge in a membrane bioreactor at 20°C.” J. Hazard. Mater. 274: 428–435. https://doi.org/10.1016/j.jhazmat.2014.04.031.
Keltjens, J. T., A. Pol, J. Reimann, and H. J. M. O. den Camp. 2014. “PQQ-dependent methanol dehydrogenases: Rare-earth elements make a difference.” Appl. Microbiol. Biotechnol. 98 (14): 6163–6183. https://doi.org/10.1007/s00253-014-5766-8.
Kim, C., N. Jang, E. Y. Lee, I. S. Chang, M. Yasin, and J. Lee. 2016a. “Enhanced mass transfer rate of methane via hollow fiber membrane modules for Methylosinus trichosporium OB3b fermentation.” J. Ind. Eng. Chem. 39 (Jul): 149–152. https://doi.org/10.1016/j.jiec.2016.05.019.
Kim, K., Y. Kim, J. Yang, K. S. Ha, H. Usta, J. Lee, and C. Kim. 2017a. “Enhanced mass transfer rate and solubility of methane via addition of alcohols for Methylosinus trichosporium OB3b fermentation.” J. Ind. Eng. Chem. 46 (Feb): 350–355. https://doi.org/10.1016/j.jiec.2016.11.003.
Kim, K., J. Lee, K. Seo, M. G. Kim, K. S. Ha, and C. Kim. 2016b. “Enhancement of methane-water volumetric mass transfer coefficient by inhibiting bubble coalescence with electrolyte.” J. Ind. Eng. Chem. 33 (Jan): 326–329. https://doi.org/10.1016/j.jiec.2015.10.018.
Kim, K., K. Seo, Y. Kim, J. Yang, K. S. Ha, J. Lee, and C. Kim. 2017b. “Cationic surfactant as methane–water mass transfer enhancer for the fermentation of Methylosinus trichosporium OB3b.” J. Ind. Eng. Chem. 53 (Sep): 228–232. https://doi.org/10.1016/j.jiec.2017.04.028.
Kim, K., K. Seo, J. Lee, M. G. Kim, K. S. Ha, and C. Kim. 2016c. “Investigation and prediction of the salting-out effect of methane in various aqueous electrolyte solutions.” J. Ind. Eng. Chem. 34 (Feb): 117–121.
Kirschke, S., et al. 2013. “Three decades of global methane sources and sinks.” Nat. Geosci. 6 (10): 813–823. https://doi.org/10.1038/ngeo1955.
Lai, C. Y., et al. 2016a. “Bioreduction of chromate in a methane-based membrane biofilm reactor.” Environ. Sci. Technol. 50 (11): 5832–5839. https://doi.org/10.1021/acs.est.5b06177.
Lai, C. Y., et al. 2016b. “Selenate and nitrate bioreductions using methane as the electron donor in a membrane biofilm reactor.” Environ. Sci. Technol. 50 (18): 10179–10186. https://doi.org/10.1021/acs.est.6b02807.
Lee, J., K. Kim, I. S. Chang, M. G. Kim, K. S. Ha, E. Y. Lee, J. Lee, and C. Kim. 2016. “Enhanced mass transfer rate of methane in aqueous phase via methyl-functionalized SBA-15.” J. Mol. Liq. 215 (Mar): 154–160. https://doi.org/10.1016/j.molliq.2015.12.041.
Lee, J., M. Yasin, S. Park, I. S. Chang, K.-S. Ha, E. Y. Lee, J. Lee, and C. Kim. 2015a. “Gas-liquid mass transfer coefficient of methane in bubble column reactor.” Korean J. Chem. Eng. 32 (6): 1060–1063. https://doi.org/10.1007/s11814-014-0341-7.
Lee, S. Y., K. S. Mo, J. H. Choi, N. H. Hur, Y. K. Kim, B. K. Oh, and J. Lee. 2015b. “Enhancement of CH4-water mass transfer using methyl-modified mesoporous silica nanoparticles.” Korean J. Chem. Eng. 32 (9): 1744–1748. https://doi.org/10.1007/s11814-014-0383-x.
Lontoh, S., A. A. DiSpirito, and J. D. Semrau. 1999. “Dichloromethane and trichloroethylene inhibition of methane oxidation by the membrane-associated methane monooxygenase of Methylosinus trichosporium OB3b.” Arch. Microbiol. 171 (5): 301–308. https://doi.org/10.1007/s002030050714.
López, J. C., G. Quijano, R. Pérez, and R. Muñoz. 2014. “Assessing the influence of CH4 concentration during culture enrichment on the biodegradation kinetics and population structure.” J. Environ. Manage. 146 (Dec): 116–123. https://doi.org/10.1016/j.jenvman.2014.06.026.
Lu, J., N. Gorret, S. E. Guillouet, A. J. Sinskey, and E. Grousseau. 2014. “Isopropanol production with engineered Cupriavidus necator as bioproduction platform.” Appl. Microbiol. Biotechnol. 98 (9): 4277–4290. https://doi.org/10.1007/s00253-014-5591-0.
Luo, J. H., H. Chen, Z. Yuan, and J. Guo. 2018. “Methane-supported nitrate removal from groundwater in a membrane biofilm reactor.” Water Res. 132 (Apr): 71–78. https://doi.org/10.1016/j.watres.2017.12.064.
Luo, J. H., M. Wu, Z. Yuan, and J. Guo. 2017. “Biological bromate reduction driven by methane in a membrane biofilm reactor.” Environ. Sci. Technol. Lett. 4 (12): 562–566. https://doi.org/10.1021/acs.estlett.7b00488.
Luo, Y. H., R. Chen, L. L. Wen, F. Meng, Y. Zhang, C. Y. Lai, B. E. Rittmann, H. P. Zhao, and P. Zheng. 2015. “Complete perchlorate reduction using methane as the sole electron donor and carbon source.” Environ. Sci. Technol. 49 (4): 2341–2349. https://doi.org/10.1021/es504990m.
Martin, K. J., and R. Nerenberg. 2012. “The membrane biofilm reactor (MBfR) for water and wastewater treatment: Principles, applications, and recent developments.” Bioresour. Technol. 122 (Oct): 83–94. https://doi.org/10.1016/j.biortech.2012.02.110.
Ménard, C., A. A. Ramirez, and M. Heitz. 2014. “Kinetics of simultaneous methane and toluene biofiltration in an inert packed bed.” J. Chem. Technol. Biotechnol. 89 (4): 597–602. https://doi.org/10.1002/jctb.4162.
Modin, O., K. Fukushi, F. Nakajima, and K. Yamamoto. 2008. “Performance of a membrane biofilm reactor for denitrification with methane.” Bioresour. Technol. 99 (17): 8054–8060. https://doi.org/10.1016/j.biortech.2008.03.042.
Modin, O., K. Fukushi, and K. Yamamoto. 2007. “Denitrification with methane as external carbon source.” Water Res. 41 (12): 2726–2738. https://doi.org/10.1016/j.watres.2007.02.053.
Montoya, J. P. 2010. Membrane gas exchange, using hollow fiber membranes to separate gases from liquid and gaseous streams. Ann Arbor, MI: MedArray.
Munasinghe, P. C., and S. K. Khanal. 2012. “Syngas fermentation to biofuel: Evaluation of carbon monoxide mass transfer and analytical modeling using a composite hollow fiber (CHF) membrane bioreactor.” Bioresour. Technol. 122 (Oct): 130–136. https://doi.org/10.1016/j.biortech.2012.03.053.
Myhre, G., et al. 2013. “Anthropogenic and natural radiative forcing.” In Proc., Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker, D. Qin, G.-K. Plattner, and M. Ti. Cambridge, UK and New York: Cambridge University Press.
Myung, J., W. M. Galega, J. D. Van Nostrand, T. Yuan, J. Zhou, and C. S. Criddle. 2015. “Long-term cultivation of a stable Methylocystis-dominated methanotrophic enrichment enabling tailored production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate).” Bioresour. Technol. 198 (Dec): 811–818. https://doi.org/10.1016/j.biortech.2015.09.094.
Myung, J., M. Kim, M. Pan, C. S. Criddle, and S. K. Y. Tang. 2016. “Low energy emulsion-based fermentation enabling accelerated methane mass transfer and growth of poly(3-hydroxybutyrate)-accumulating methanotrophs.” Bioresour. Technol. 207 (May): 302–307. https://doi.org/10.1016/j.biortech.2016.02.029.
Myung, J., N. I. Strong, W. M. Galega, E. R. Sundstrom, J. C. A. Flanagan, S. G. Woo, R. M. Waymouth, and C. S. Criddle. 2014. “Disassembly and reassembly of polyhydroxyalkanoates: Recycling through abiotic depolymerization and biotic repolymerization.” Bioresour. Technol. 170 (Oct): 167–174. https://doi.org/10.1016/j.biortech.2014.07.105.
Olivier, J. G. J., and M. Muntean. 2013. Trends in global CO2 emissions 2013 report background studies. Hague, Netherlands: PBL Netherlands Environmental Assessment Agency.
Ordaz, A., J. C. López, I. Figueroa-González, R. Muñoz, and G. Quijano. 2014. “Assessment of methane biodegradation kinetics in two-phase partitioning bioreactors by pulse respirometry.” Water Res. 67 (Dec): 46–54. https://doi.org/10.1016/j.watres.2014.08.054.
Orgill, J. J., M. C. Abboud, H. K. Atiyeh, M. Devarapalli, X. Sun, and R. S. Lewis. 2019. “Measurement and prediction of mass transfer coefficients for syngas constituents in a hollow fiber reactor.” Bioresour. Technol. 276 (Mar): 1–7. https://doi.org/10.1016/j.biortech.2018.12.092.
Orgill, J. J., H. K. Atiyeh, M. Devarapalli, J. R. Phillips, R. S. Lewis, and R. L. Huhnke. 2013. “A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors.” Bioresour. Technol. 133 (Apr): 340–346. https://doi.org/10.1016/j.biortech.2013.01.124.
Park, S., C. Lim, J.-G. Na, B.-K. Oh, T. Kim, R. Mariyana, M.-S. Kim, and J. Lee. 2018. “Mass transfer performance of a string film reactor: A bioreactor design for aerobic methane bioconversion.” Catalysts 8 (11): 490. https://doi.org/10.3390/catal8110490.
Pen, N., L. Soussan, M. P. Belleville, J. Sanchez, C. Charmette, and D. Paolucci-Jeanjean. 2014. “An innovative membrane bioreactor for methane biohydroxylation.” Bioresour. Technol. 174 (Dec): 42–52. https://doi.org/10.1016/j.biortech.2014.10.001.
Pen, N., L. Soussan, M. P. Belleville, J. Sanchez, and D. Paolucci-Jeanjean. 2016. “Methane hydroxylation by Methylosinus trichosporium OB3b: Monitoring the biocatalyst activity for methanol production optimization in an innovative membrane bioreactor.” Biotechnol. Bioprocess Eng. 21 (2): 283–293. https://doi.org/10.1007/s12257-015-0762-0.
Petersen, L. A. H., J. Villadsen, S. B. Jørgensen, and K. V. Gernaey. 2017. “Mixing and mass transfer in a pilot scale U-loop bioreactor.” Biotechnol. Bioeng. 114 (2): 344–354. https://doi.org/10.1002/bit.26084.
Pieja, A. J., M. C. Morse, and A. J. Cal. 2017. “Methane to bioproducts: The future of the bioeconomy?” Curr. Opin. Chem. Biol. 41 (1): 123–131. https://doi.org/10.1016/j.cbpa.2017.10.024.
Pieja, A. J., K. H. Rostkowski, and C. S. Criddle. 2011. “Distribution and selection of poly-3-hydroxybutyrate production capacity in methanotrophic proteobacteria.” Microb. Ecol. 62 (3): 564–573. https://doi.org/10.1007/s00248-011-9873-0.
Reij, M. W., J. T. Keurentjes, and S. Hartmans. 1998. “Membrane bioreactor for waste gas treatment.” J. Biotechnol. 59 (3): 155–167. https://doi.org/10.1016/S0168-1656(97)00169-7.
Reinecke, F., and A. Steinbüchel. 2008. “Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers.” J. Mol. Microbiol. Biotechnol. 16 (1–2): 91–108. https://doi.org/10.1159/000142897.
Rocha-Rios, J., S. Bordel, S. Hernández, and S. Revah. 2009. “Methane degradation in two-phase partition bioreactors.” Chem. Eng. J. 152 (1): 289–292. https://doi.org/10.1016/j.cej.2009.04.028.
Rocha-Rios, J., N. J. R. Kraakman, R. Kleerebezem, S. Revah, M. T. Kreutzer, and M. C. M. van Loosdrecht. 2013. “A capillary bioreactor to increase methane transfer and oxidation through Taylor flow formation and transfer vector addition.” Chem. Eng. J. 217 (Feb): 91–98. https://doi.org/10.1016/j.cej.2012.11.065.
Rocha-Rios, J., R. Muñoz, and S. Revah. 2010. “Effect of silicone oil fraction and stirring rate on methane degradation in a stirred tank reactor.” J. Chem. Technol. Biotechnol. 85 (3): 314–319. https://doi.org/10.1002/jctb.2339.
Rocha-Rios, J., G. Quijano, F. Thalasso, S. Revah, and R. Muñoz. 2011. “Methane biodegradation in a two-phase partition internal loop airlift reactor with gas recirculation.” J. Chem. Technol. Biotechnol. 86 (3): 353–360. https://doi.org/10.1002/jctb.2523.
Rodrigues, A. D. S., B. Valdman, and A. M. Salgado. 2009. “Analysis of methane biodegradation by Methylosinus trichosporium OB3b.” Brazilian J. Microbiol. 40 (2): 301–307. https://doi.org/10.1590/S1517-83822009000200017.
Semrau, J. D., A. A. Dispirito, and S. Yoon. 2010. “Methanotrophs and copper.” FEMS Microbiol. Rev. 34 (4): 496–531. https://doi.org/10.1111/j.1574-6976.2010.00212.x.
Shen, Y., R. Brown, and Z. Wen. 2014. “Syngas fermentation of clostridium carboxidivoran P7 in a hollow fiber membrane biofilm reactor: Evaluating the mass transfer coefficient and ethanol production performance.” Biochem. Eng. J. 85 (Apr): 21–29. https://doi.org/10.1016/j.bej.2014.01.010.
Speitel, G. E., R. C. Thompson, and D. Weissman. 1993. “Biodegradation kinetics of Methylosinus trichosporium OB3b at low concentrations of chloroform in the presence and absence of enzyme competition by methane.” Water Res. 27 (1): 15–24. https://doi.org/10.1016/0043-1354(93)90190-S.
Stein, L. Y., and M. G. Klotz. 2011. “Nitrifying and denitrifying pathways of methanotrophic bacteria.” Biochem. Soc. Trans. 39 (6): 1826–1831. https://doi.org/10.1042/BST20110712.
Stone, K. A., M. V. Hilliard, Q. P. He, and J. Wang. 2017. “A mini review on bioreactor configurations and gas transfer enhancements for biochemical methane conversion.” Biochem. Eng. J. 128 (Dec): 83–92. https://doi.org/10.1016/j.bej.2017.09.003.
Strong, P. J., M. Kalyuzhnaya, J. Silverman, and W. P. Clarke. 2016. “A methanotroph-based biorefinery: Potential scenarios for generating multiple products from a single fermentation.” Bioresour. Technol. 215 (Sep): 314–323. https://doi.org/10.1016/j.biortech.2016.04.099.
Strong, P. J., S. Xie, and W. P. Clarke. 2015. “Methane as a resource: Can the methanotrophs add value?” Environ. Sci. Technol. 49 (7): 4001–4018. https://doi.org/10.1021/es504242n.
Sun, F. Y., W. Y. Dong, M. F. Shao, X. M. Lv, J. Li, L. Y. Peng, and H. J. Wang. 2013. “Aerobic methane oxidation coupled to denitrification in a membrane biofilm reactor: Treatment performance and the effect of oxygen ventilation.” Bioresour. Technol. 145 (Oct): 2–9. https://doi.org/10.1016/j.biortech.2013.03.115.
Syron, E., and E. Casey. 2008. “Membrane-aerated biofilms for high rate biotreatment: Performance appraisal, engineering principles, scale-up, and development requirements.” Environ. Sci. Technol. 42 (6): 1833–1844. https://doi.org/10.1021/es0719428.
USEPA. 2016. Climate change indicators in the United States, 2016. Washington, DC: USEPA.
Van Bodegom, P., F. Stams, L. Mollema, S. Boeke, and P. Leffelaar. 2001. “Methane oxidation and the competition for oxygen in the rice rhizosphere.” Appl. Environ. Microbiol. 67 (8): 3586–3597. https://doi.org/10.1128/AEM.67.8.3586-3597.2001.
Wendlandt, K. D., M. Jechorek, and E. Brühl. 1993. “The influence of pressure on the growth of methanotrophic bacteria.” Acta Biotechnol. 13 (2): 111–115. https://doi.org/10.1002/abio.370130205.
Wendlandt, K. D., M. Jechorek, J. Helm, and U. Stottmeister. 2001. “Producing poly-3-hydroxybutyrate with a high molecular mass from methane.” J. Biotechnol. 86 (2): 127–133. https://doi.org/10.1016/S0168-1656(00)00408-9.
Whittenbury, R., K. Phillips, and J. Wilkinson. 1970. “Enrichment, isolation and some properties of methane-utilizing bacteria.” Microbiology 61 (2): 205–218. https://doi.org/10.1099/00221287-61-2-205.
Yazdian, F., M. P. Hajiabbas, S. A. Shojaosadati, M. Nosrati, E. Vasheghani-Farahani, and M. R. Mehrnia. 2010. “Study of hydrodynamics, mass transfer, energy consumption, and biomass production from natural gas in a forced-liquid vertical tubular loop bioreactor.” Biochem. Eng. J. 49 (2): 192–200. https://doi.org/10.1016/j.bej.2009.12.013.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 146Issue 6June 2020

History

Published online: Apr 2, 2020
Published in print: Jun 1, 2020
Discussion open until: Sep 2, 2020

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Jorge Luis Meraz [email protected]
Doctoral Student, Dept. of Civil and Environmental Engineering, Stanford Univ., 473 Via Ortega, Room 161, Stanford, CA 94305. Email: [email protected]
Kristian L. Dubrawski, Ph.D. [email protected]
Postdoctoral Researcher, Dept. of Civil and Environmental Engineering, Stanford Univ., 473 Via Ortega, Room 161, Stanford, CA 94305. Email: [email protected]
Doctoral Student, Dept. of Civil and Environmental Engineering, Stanford Univ., 473 Via Ortega, Room 161, Stanford, CA 94305. ORCID: https://orcid.org/0000-0003-2500-553X. Email: [email protected]
Professor of Environmental Engineering, Dept. of Environmental Engineering, Kyungpook National Univ., 80 Daehak-ro, Buk-gu, Daegu 702-701, Republic of Korea. ORCID: https://orcid.org/0000-0002-4773-5886. Email: [email protected]
Craig S. Criddle, Ph.D., M.ASCE [email protected]
Professor of Civil and Environmental Engineering, Dept. of Civil and Environmental Engineering, Stanford Univ., 473 Via Ortega, Room 161, Stanford, CA 94305 (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share