State-of-the-Art Reviews
Feb 20, 2020

Membrane Bioreactors for Nitrogen Removal from Wastewater: A Review

Publication: Journal of Environmental Engineering
Volume 146, Issue 5

Abstract

The application of membrane bioreactor (MBR) processes for conventional, municipal and industrial wastewater treatment [e.g., biological oxygen demand (BOD) reduction] is well established. The research and development of MBR processes for nitrogen removal is more recent. To date, no thorough review of MBR technology for nitrogen removal from wastewater has been carried out. The review presented here provides an overview of MBR process configurations for the removal of nitrogen based on conventional nitrogen-removal pathways (i.e., nitrification/denitrification) as well as alternative nitrogen-removal pathways, such as anaerobic ammonium oxidation (ANAMMOX). A wide range of system configurations have been explored for the application of MBR for nitrogen removal, including immersed or side-stream membrane configurations, single or multichamber processes, and the application of fixed and moving bed biofilms. Operating variables play an important role in controlling nitrogen removal and fouling, especially feed composition (particularly the carbonnitrogen ratio), membrane characteristics, solids retention time, and hydraulic retention time. Modeling approaches for predicting nitrogen removal using MBR are evolving and are better able to represent key process differences in MBRs compared to conventional activated sludge. Although several challenges remain (e.g., membrane fouling, cost, and energy consumption), a number of opportunities exist (such as new reactor configurations, new microbial pathways, and development of a better understanding of process function through metaomic approaches) that may lead to the broader application of MBR processes for nitrogen removal from municipal wastewater in the future.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

No data, models, or code were generated or used during the study.

Acknowledgments

This work was supported by a grant to the Center for Clean Water Technology from the New York State Department of Environmental Conservation and a grant from the National Science Foundation (DMR-1808690).

References

Abbassi, R., A. K. Yadav, S. Huang, and P. R. Jaffe. 2014. “Laboratory study of nitrification, denitrification and anammox processes in membrane bioreactors considering periodic aeration.” J. Environ. Manage. 142 (Sep): 53–59. https://doi.org/10.1016/j.jenvman.2014.03.013.
Abdel-Kader, A. M. 2013. “Assessment of an MBR system for segregated household wastewater by using simulation mathematical model.” In Proc., 13th Int. Conf. on Environmental Science and Technology, edited by T. D. Lekkas. Athens, Greece: Global NEST.
Abegglen, C., M. Ospelt, and H. Siegrist. 2008. “Biological nutrient removal in a small-scale MBR treating household wastewater.” Water Res. 42 (1–2): 338–346. https://doi.org/10.1016/j.watres.2007.07.020.
Ahmed, Z., B.-R. Lim, J. Cho, K.-G. Song, K.-P. Kim, and K.-H. Ahn. 2008. “Biological nitrogen and phosphorus removal and changes in microbial community structure in a membrane bioreactor: Effect of different carbon sources.” Water Res. 42 (1–2): 198–210. https://doi.org/10.1016/j.watres.2007.06.062.
Amin, M. M., J. L. Zilles, J. Greiner, S. Charbonneau, L. Raskin, and E. Morgenroth. 2006. “Influence of the antibiotic erythromycin on anaerobic treatment of a pharmaceutical wastewater.” Environ. Sci. Technol. 40 (12): 3971–3977. https://doi.org/10.1021/es060428j.
AMTA (American Membrane Technology Association). 2013. Membrane bio-reactors (MBR). Edited by AMTA. Stuart, FL: AMTA.
Andersson, S., P. Ek, M. Berg, J. Grundestam, and E. Lindblom. 2016. “Extension of two large wastewater treatment plants in Stockholm using membrane technology.” Water Pract. Technol. 11 (4): 744–753. https://doi.org/10.2166/wpt.2016.034.
Artiga, P., V. Oyanedel, J. M. Garrido, and R. Mendez. 2005. “An innovative biofilm-suspended biomass hybrid membrane bioreactor for wastewater treatment.” Desalination 179 (1–3): 171–179. https://doi.org/10.1016/j.desal.2004.11.065.
Atasoy, E., S. Murat, A. Baban, and M. Tiris. 2007. “Membrane bioreactor (MBR) treatment of segregated household wastewater for reuse.” Clean-Soil Air Water 35 (5): 465–472. https://doi.org/10.1002/clen.200720006.
Babaei, A., M. R. Mehrnia, J. Shayegan, and M. H. Sarrafzadeh. 2016. “Comparison of different trophic cultivations in microalgal membrane bioreactor containing N-riched wastewater for simultaneous nutrient removal and biomass production.” Process Biochem. 51 (10): 1568–1575. https://doi.org/10.1016/j.procbio.2016.06.011.
Bertanza, G., M. Canato, G. Laera, M. Vaccari, M. Svanström, and S. Heimersson. 2017. “A comparison between two full-scale MBR and CAS municipal wastewater treatment plants: techno-economic-environmental assessment.” Environ. Sci. Pollut. Res. 24 (21): 17383–17393. https://doi.org/10.1007/s11356-017-9409-3.
Bilad, M. R., H. A. Arafat, and I. F. J. Vankelecom. 2014. “Membrane technology in microalgae cultivation and harvesting: A review.” Biotechnol. Adv. 32 (7): 1283–1300. https://doi.org/10.1016/j.biotechadv.2014.07.008.
Bracklow, U., A. Drews, R. Gnirss, S. Klamm, B. Lesjean, J. Stuber, M. Barjenbruch, and M. Kraume. 2010. “Influence of sludge loadings and types of substrates on nutrients removal in MBRs.” Desalination 250 (2): 734–739. https://doi.org/10.1016/j.desal.2008.11.032.
Brindle, K., and T. Stephenson. 1996. “Nitrification in a bubbleless oxygen mass transfer membrane bioreactor.” Water Sci. Technol. 34 (9): 261–267. https://doi.org/10.2166/wst.1996.0227.
Brindle, K., T. Stephenson, and M. J. Semmens. 1998. “Nitrification and oxygen utilisation in a membrane aeration bioreactor.” J. Membr. Sci. 144 (1–2): 197–209. https://doi.org/10.1016/S0376-7388(98)00047-7.
Buer, T., and J. Cumin. 2010. “MBR module design and operation.” Desalination 250 (3): 1073–1077. https://doi.org/10.1016/j.desal.2009.09.111.
Camacho, R. A., J. L. Martin, B. Watson, M. J. Paul, L. Zheng, and J. B. Stribling. 2015. “Modeling the factors controlling phytoplankton in the St. Louis Bay Estuary, Mississippi and evaluating estuarine responses to nutrient load modifications.” J. Environ. Eng. 141 (3): 04014067. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000892.
Casey, E., B. Glennon, and G. Hamer. 1999. “Review of membrane aerated biofilm reactors.” Resour. Conserv. Recycl. 27 (1–2): 203–215. https://doi.org/10.1016/S0921-3449(99)00007-5.
Casey, E., B. Glennon, and G. Hamer. 2000. “Biofilm development in a membrane-aerated biofilm reactor: Effect of flow velocity on performance.” Biotechnol. Bioeng. 67 (4): 476–486. https://doi.org/10.1002/(SICI)1097-0290(20000220)67:4%3C476::AID-BIT11%3E3.0.CO;2-2.
Chae, S. R., and H. S. Shin. 2007. “Characteristics of simultaneous organic and nutrient removal in a pilot-scale vertical submerged membrane bioreactor (VSMBR) treating municipal wastewater at various temperatures.” Process Biochem. 42 (2): 193–198. https://doi.org/10.1016/j.procbio.2006.07.033.
Chen, L., and C. Q. Cao. 2012. “Characteristics and simulation of soluble microbial products in membrane bioreactors coupled with moving carriers (MBR-MC).” Desalin. Water Treat. 40 (1–3): 45–55. https://doi.org/10.1080/19443994.2012.671140.
Chen, W., F. Y. Sun, X. M. Wang, and X. Y. Li. 2010. “A membrane bioreactor for an innovative biological nitrogen removal process.” Water Sci. Technol. 61 (3): 671–676. https://doi.org/10.2166/wst.2010.886.
Choi, H. 2015. “Intensified production of microalgae and removal of nutrient using a microalgae membrane bioreactor (MMBR).” Appl. Biochem. Biotechnol. 175 (4): 2195–2205. https://doi.org/10.1007/s12010-014-1365-5.
Chong, M. N., A. N. M. Ho, T. Gardner, A. K. Sharma, and B. Hood. 2013. “Assessing decentralised wastewater treatment technologies: Correlating technology selection to system robustness, energy consumption and GHG emission.” J. Water Clim. Change 4 (4): 338–347. https://doi.org/10.2166/wcc.2013.077.
Chu, L. B., and J. L. Wang. 2011. “Nitrogen removal using biodegradable polymers as carbon source and biofilm carriers in a moving bed biofilm reactor.” Chem. Eng. J. 170 (1): 220–225. https://doi.org/10.1016/j.cej.2011.03.058.
Chung, J., G. Kim, K. W. Seo, J. Jin, and Y. S. Choi. 2014. “Effects of step-feeding and internal recycling on nitrogen removal in ceramic membrane bioreactors, and their hydraulic backwashing characteristics.” Sep. Purif. Technol. 138 (Dec): 219–226. https://doi.org/10.1016/j.seppur.2014.10.005.
Cosenza, A., G. Mannina, M. B. Neumann, G. Viviani, and P. A. Vanrolleghem. 2013. “Biological nitrogen and phosphorus removal in membrane bioreactors: Model development and parameter estimation.” Bioprocess. Biosyst. Eng. 36 (4): 499–514. https://doi.org/10.1007/s00449-012-0806-1.
Daigger, G. T., and H. X. Littleton. 2014. “Simultaneous biological nutrient removal: A state-of-the-art review.” Water Environ. Res. 86 (3): 245–257. https://doi.org/10.2175/106143013X13736496908555.
Davis, T. W., D. L. Berry, G. L. Boyer, and C. J. Gobler. 2009. “The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms.” Harmful Algae 8 (5): 715–725. https://doi.org/10.1016/j.hal.2009.02.004.
Deblonde, T., C. Cossu-Leguille, and P. Hartemann. 2011. “Emerging pollutants in wastewater: A review of the literature.” Int. J. Hyg. Environ. Health 214 (6): 442–448. https://doi.org/10.1016/j.ijheh.2011.08.002.
Deguchi, H., and M. Kashiwaya. 1994. “Study on nitrified liquor recycling process operations using polyurethane foam sponge cubes as a biomass support medium.” Water Sci. Technol. 30 (6): 143–149. https://doi.org/10.2166/wst.1994.0261.
Deng, Y., Y. Zhang, Y. Gao, D. Li, R. Liu, M. Liu, H. Zhang, B. Hu, T. Yu, and M. Yang. 2012. “Microbial community compositional analysis for series reactors treating high level antibiotic wastewater.” Environ. Sci. Technol. 46 (2): 795–801. https://doi.org/10.1021/es2025998.
Di Bella, G., G. Mannina, and G. Viviani. 2008. “An integrated model for physical-biological wastewater organic removal in a submerged membrane bioreactor: Model development and parameter estimation.” J. Membr. Sci. 322 (1): 1–12. https://doi.org/10.1016/j.memsci.2008.05.036.
Downing, L. S., and R. Nerenberg. 2008. “Total nitrogen removal in a hybrid, membrane-aerated activated sludge process.” Water Res. 42 (14): 3697–3708. https://doi.org/10.1016/j.watres.2008.06.006.
Drews, A., C.-H. Lee, and M. Kraume. 2006. “Membrane fouling—A review on the role of EPS.” Desalination 200 (1): 186–188. https://doi.org/10.1016/j.desal.2006.03.290.
Drews, A., J. Mante, V. Iversen, M. Vocks, B. Lesjean, and M. Kraume. 2007. “Impact of ambient conditions on SMP elimination and rejection in MBRs.” Water Res. 41 (17): 3850–3858. https://doi.org/10.1016/j.watres.2007.05.046.
Duan, L., S. Li, L. Han, Y. Song, B. Zhou, and J. Zhang. 2015. “Comparison between moving bed-membrane bioreactor and conventional membrane bioreactor systems. Part I: Membrane fouling.” Environ. Earth Sci. 73 (9): 4881–4890. https://doi.org/10.1007/s12665-015-4159-3.
Dupla, M., Y. Comeau, S. Parent, R. Villemur, and M. Jolicoeur. 2006. “Design optimization of a self-cleaning moving-bed bioreactor for seawater denitrification.” Water Res. 40 (2): 249–258. https://doi.org/10.1016/j.watres.2005.10.029.
Dvorak, L., M. Gomez, J. Dolina, and A. Cernin. 2016. “Anaerobic membrane bioreactors—A mini review with emphasis on industrial wastewater treatment: Applications, limitations and perspectives.” Desalin. Water Treat. 57 (41): 19062–19076.
Falahti-Marvast, H., and A. Karimi-Jashni. 2015. “Performance of simultaneous organic and nutrient removal in a pilot scale anaerobic–anoxic–oxic membrane bioreactor system treating municipal wastewater with a high nutrient mass ratio.” Int. Biodeterior. Biodegrad. 104 (Oct): 363–370. https://doi.org/10.1016/j.ibiod.2015.07.001.
Fenu, A., G. Guglielmi, J. Jimenez, M. Sperandio, D. Saroj, B. Lesjean, C. Brepols, C. Thoeye, and I. Nopens. 2010. “Activated sludge model (ASM) based modelling of membrane bioreactor (MBR) processes: A critical review with special regard to MBR specificities.” Water Res. 44 (15): 4272–4294. https://doi.org/10.1016/j.watres.2010.06.007.
Fountoulakis, M. S., N. Markakis, I. Petousi, and T. Manios. 2016. “Single house on-site grey water treatment using a submerged membrane bioreactor for toilet flushing.” Sci. Total Environ. 551 (May): 706–711. https://doi.org/10.1016/j.scitotenv.2016.02.057.
Gander, M., B. Jefferson, and S. Judd. 2000. “Aerobic MBRs for domestic wastewater treatment: A review with cost considerations.” Sep. Purif. Technol. 18 (2): 119–130. https://doi.org/10.1016/S1383-5866(99)00056-8.
Gao, F., C. Li, Z.-H. Yang, G.-M. Zeng, J. Mu, M. Liu, and W. Cui. 2016. “Removal of nutrients, organic matter, and metal from domestic secondary effluent through microalgae cultivation in a membrane photobioreactor.” J. Chem. Technol. Biotechnol. 91 (10): 2713–2719. https://doi.org/10.1002/jctb.4879.
Gao, F., Y.-Y. Peng, C. Li, W. Cui, Z.-H. Yang, and G.-M. Zeng. 2018. “Coupled nutrient removal from secondary effluent and algal biomass production in membrane photobioreactor (MPBR): Effect of HRT and long-term operation.” Chem. Eng. J. 335 (Mar): 169–175. https://doi.org/10.1016/j.cej.2017.10.151.
Gao, F., Z.-H. Yang, C. Li, Y.-J. Wang, W. H. Jin, and Y.-B. Deng. 2014. “Concentrated microalgae cultivation in treated sewage by membrane photobioreactor operated in batch flow mode.” Bioresour. Technol. 167 (Sep): 441–446. https://doi.org/10.1016/j.biortech.2014.06.042.
Ghyoot, W., S. Vandaele, and W. Verstraete. 1999. “Nitrogen removal from sludge reject water with a membrane-assisted bioreactor.” Water Res. 33 (1): 23–32. https://doi.org/10.1016/S0043-1354(98)00190-0.
Giraldo, E., P. Jjemba, Y. Liu, and S. Muthukrishnan. 2011. “Presence and significance of ANAMMOX spcs and ammonia oxidizing archea, AOA, in full scale membrane bioreactors for total nitrogen removal.” Proc. Water Environ. Fed. 2011 (1): 510–519. https://doi.org/10.2175/193864711802867414.
Gong, Z., S. T. Liu, F. L. Yang, H. Bao, and K. Furukawa. 2008. “Characterization of functional microbial community in a membrane-aerated biofilm reactor operated for completely autotrophic nitrogen removal.” Bioresour. Technol. 99 (8): 2749–2756. https://doi.org/10.1016/j.biortech.2007.06.040.
Gong, Z., F. L. Yang, S. T. Liu, H. Bao, S. W. Hu, and K. J. Furukawa. 2007. “Feasibility of a membrane-aerated biofilm reactor to achieve single-stage autotrophic nitrogen removal based on Anammox.” Chemosphere 69 (5): 776–784. https://doi.org/10.1016/j.chemosphere.2007.05.023.
Hadi, P., M. Yang, H. Ma, X. Huang, H. Walker, and B. S. Hsiao. 2019. “Biofouling-resistant nanocellulose layer in hierarchical polymeric membranes: Synthesis, characterization and performance.” J. Membr. Sci. 579 (Jun): 162–171. https://doi.org/10.1016/j.memsci.2019.02.059.
Han, T., H. F. Lu, S. S. Ma, Y. H. Zhang, Z. D. Liu, and N. Duan. 2017. “Progress in microalgae cultivation photobioreactors and applications in wastewater treatment: A review.” Int. J. Agric. Biol. Eng. 10 (1): 1–29.
Henze, M., W. Gujer, T. Mino, and M. van Loosdrecht. 2000. Activated sludge models ASM1, ASM2, ASM2d and ASM3. London: IWA Publishing.
Hibiya, K., A. Terada, S. Tsuneda, and A. Hirata. 2003. “Simultaneous nitrification and denitrification by controlling vertical and horizontal microenvironment in a membrane-aerated biofilm reactor.” J. Biotechnol. 100 (1): 23–32. https://doi.org/10.1016/S0168-1656(02)00227-4.
Hocaoglu, S. M., E. Atasoy, A. Baban, G. Insel, and D. Orhon. 2013. “Nitrogen removal performance of intermittently aerated membrane bioreactor treating black water.” Environ. Technol. 34 (19): 2717–2725. https://doi.org/10.1080/09593330.2013.786139.
Hocaoglu, S. M., G. Insel, E. U. Cokgor, and D. Orhon. 2011a. “Effect of low dissolved oxygen on simultaneous nitrification and denitrification in a membrane bioreactor treating black water.” Bioresour. Technol. 102 (6): 4333–4340. https://doi.org/10.1016/j.biortech.2010.11.096.
Hocaoglu, S. M., G. Insel, E. U. Cokgor, and D. Orhon. 2011b. “Effect of sludge age on simultaneous nitrification and denitrification in membrane bioreactor.” Bioresour. Technol. 102 (12): 6665–6672. https://doi.org/10.1016/j.biortech.2011.03.096.
Hoffmann, J. P. 1998. “Wastewater treatment with suspended and nonsuspended algae.” J. Phycol. 34 (5): 757–763. https://doi.org/10.1046/j.1529-8817.1998.340757.x.
Hou, D. X., L. Lu, D. Y. Sun, Z. Ge, X. Huang, T. Y. Cath, and Z. J. Ren. 2017. “Microbial electrochemical nutrient recovery in anaerobic osmotic membrane bioreactors.” Water Res. 114 (May): 181–188. https://doi.org/10.1016/j.watres.2017.02.034.
Hou, F., B. Li, M. Xing, Q. Wang, L. Hu, and S. Wang. 2013. “Surface modification of PVDF hollow fiber membrane and its application in membrane aerated biofilm reactor (MABR).” Bioresour. Technol. 140 (Jul): 1–9. https://doi.org/10.1016/j.biortech.2013.04.056.
Hu, S. W., F. L. Yang, C. Sun, J. Y. Zhang, and T. H. Wang. 2008. “Simultaneous removal of COD and nitrogen using a novel carbon-membrane aerated biofilm reactor.” J. Environ. Sci. 20 (2): 142–148. https://doi.org/10.1016/S1001-0742(08)60022-4.
Huang, L., X. Li, Y. Ren, and X. Wang. 2017. “Preparation of conductive microfiltration membrane and its performance in a coupled configuration of membrane bioreactor with microbial fuel cell.” RSC Adv. 7 (34): 20824–20832. https://doi.org/10.1039/C7RA01014A.
Huang, L.-Y., D.-J. Lee, and J.-Y. Lai. 2015. “Forward osmosis membrane bioreactor for wastewater treatment with phosphorus recovery.” Bioresour. Technol. 198 (Dec): 418–423. https://doi.org/10.1016/j.biortech.2015.09.045.
Huang, Y., T. Wang, Z. Xu, E. Hughes, F. Qian, M. Lee, Y. Fan, Y. Lei, C. Brückner, and B. Li. 2019. “Real-time in situ monitoring of nitrogen dynamics in wastewater treatment processes using wireless, solid-state, and ion-selective membrane sensors.” Environ. Sci. Technol. 53 (6): 3140–3148. https://doi.org/10.1021/acs.est.8b05928.
Insel, G., S. Erol, and S. Ovez. 2014. “Effect of simultaneous nitrification and denitrification on nitrogen removal performance and filamentous microorganism diversity of a full-scale MBR plant.” Bioprocess. Biosyst. Eng. 37 (11): 2163–2173. https://doi.org/10.1007/s00449-014-1193-6.
Ivanovic, I., and T. O. Leiknes. 2012. “The biofilm membrane bioreactor (BF-MBR)—A review.” Desalin. Water Treat. 37 (1–3): 288–295. https://doi.org/10.1080/19443994.2012.661283.
Jabornig, S., and E. Favero. 2013. “Single household greywater treatment with a moving bed biofilm membrane reactor (MBBMR).” J. Membr. Sci. 446 (Nov): 277–285. https://doi.org/10.1016/j.memsci.2013.06.049.
Jarvie, M., and B. Solomon. 1998. “Point-nonpoint effluent trading in watersheds: A review and critique.” Environ. Impact Assess. Rev. 18 (2): 135–157. https://doi.org/10.1016/S0195-9255(97)00084-X.
Jiang, H., H. Wang, F. Liang, S. Werth, T. Schiestel, and J. Caro. 2009. “Direct decomposition of nitrous oxide to nitrogen by in situ oxygen removal with a perovskite membrane.” Angew. Chem. Int. Ed. 48 (16): 2983–2986. https://doi.org/10.1002/anie.200804582.
Jiang, T., X. Liu, M. D. Kennedy, J. C. Schippers, and P. A. Vanrolleghem. 2005. “Calibrating a side-stream membrane bioreactor using Activated Sludge Model No. 1.” Water Sci. Technol. 52 (10–11): 359–367. https://doi.org/10.2166/wst.2005.0712.
Johir, M. A. H., J. George, S. Vigneswaran, J. Kandasamy, and A. Grasmick. 2011. “Removal and recovery of nutrients by ion exchange from high rate membrane bio-reactor (MBR) effluent.” Desalination 275 (1): 197–202. https://doi.org/10.1016/j.desal.2011.02.054.
Johnson, K. R., and W. Admassu. 2013. “Mixed algae cultures for low cost environmental compensation in cultures grown for lipid production and wastewater remediation.” J. Chem. Technol. Biotechnol. 88 (6): 992–998. https://doi.org/10.1002/jctb.3943.
Jones, O. A. H., N. Voulvoulis, and J. N. Lester. 2005. “Human pharmaceuticals in wastewater treatment processes.” Crit. Rev. Environ. Sci. Technol. 35 (4): 401–427.
Ju, F., F. Lau, and T. Zhang. 2017. “Linking microbial community, environmental variables, and methanogenesis in anaerobic biogas digesters of chemically enhanced primary treatment sludge.” Environ. Sci. Technol. 51 (7): 3982–3992. https://doi.org/10.1021/acs.est.6b06344.
Judd, S. 2008. “The status of membrane bioreactor technology.” Trends Biotechnol. 26 (2): 109–116. https://doi.org/10.1016/j.tibtech.2007.11.005.
Judd, S., and C. Judd. 2011. The MBR book principles and applications of membrane bioreactors for water and wastewater treatment introduction. Oxford: Elsevier.
Kim, H.-G., H.-N. Jang, H.-M. Kim, D.-S. Lee, R. C. Eusebio, H.-S. Kim, and T.-H. Chung. 2010. “Enhancing nutrient removal efficiency by changing the internal recycling ratio and position in a pilot-scale MBR process.” Desalination 262 (1–3): 50–56. https://doi.org/10.1016/j.desal.2010.05.040.
Kinney, E. L., and I. Valiela. 2011. “Nitrogen loading to Great South Bay: Land use, sources, retention, and transport from land to bay.” J. Coastal Res. 27 (4): 672–686. https://doi.org/10.2112/JCOASTRES-D-09-00098.1.
Kraemer, J. T., A. L. Menniti, Z. K. Erdal, T. A. Constantine, B. R. Johnson, G. T. Daigger, and G. V. Crawford. 2012. “A practitioner’s perspective on the application and research needs of membrane bioreactors for municipal wastewater treatment.” Bioresour. Technol. 122 (Oct): 2–10. https://doi.org/10.1016/j.biortech.2012.05.014.
Krzeminski, P., L. Leverette, S. Malamis, and E. Katsou. 2017. “Membrane bioreactors—A review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects.” J. Membr. Sci. 527 (Apr): 207–227. https://doi.org/10.1016/j.memsci.2016.12.010.
Kumar, A., X. Yuan, A. K. Sahu, S. J. Ergas, H. Van Langenhove, and J. Dewulf. 2010. “A hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: a process engineering approach.” J. Chem. Technol. Biotechnol. 85 (3): 387–394. https://doi.org/10.1002/jctb.2332.
Lee, J., W. Y. Ahn, and C. H. Lee. 2001. “Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor.” Water Res. 35 (10): 2435–2445. https://doi.org/10.1016/S0043-1354(00)00524-8.
Lee, W. N., I. J. Kang, and C. H. Lee. 2006. “Factors affecting filtration characteristics in membrane-coupled moving bed biofilm reactor.” Water Res. 40 (9): 1827–1835. https://doi.org/10.1016/j.watres.2006.03.007.
Leiknes, T., H. Bolt, M. Engmann, and H. Odegaard. 2006. “Assessment of membrane reactor design in the performance of a hybrid biofilm membrane bioreactor (BF-MBR).” Desalination 199 (1–3): 328–330. https://doi.org/10.1016/j.desal.2006.03.181.
Lesjean, B., A. Tazi-Pain, D. Thaure, H. Moeslang, and H. Buisson. 2011. “Ten persistent myths and the realities of membrane bioreactor technology for municipal applications.” Water Sci. Technol. 63 (1): 32–39. https://doi.org/10.2166/wst.2011.005.
Leyva-Diaz, J. C., A. Gonzalez-Martinez, M. M. Munio, and J. M. Poyatos. 2015. “Two-step nitrification in a pure moving bed biofilm reactor-membrane bioreactor for wastewater treatment: Nitrifying and denitrifying microbial populations and kinetic modeling.” Appl. Microbiol. Biotechnol. 99 (23): 10333–10343.
Leyva-Diaz, J. C., M. M. Munio, J. Gonzalez-Lopez, and J. M. Poyatos. 2016. “Anaerobic/anoxic/oxic configuration in hybrid moving bed biofilm reactor-membrane bioreactor for nutrient removal from municipal wastewater.” Ecol. Eng. 91 (Jun): 449–458.
Li, F. Y., H. Gulyas, K. Wichmann, and R. Otterpohl. 2009. “Treatment of household grey water with a UF membrane filtration system.” Desalin. Water Treat. 5 (1–3): 275–282. https://doi.org/10.5004/dwt.2009.550.
Li, H., W. Zuo, Y. Tian, J. Zhang, S. J. Di, L. P. Li, and X. Y. Su. 2017. “Simultaneous nitrification and denitrification in a novel membrane bioelectrochemical reactor with low membrane fouling tendency.” Environ. Sci. Pollut. Res. 24 (6): 5106–5117. https://doi.org/10.1007/s11356-016-6084-8.
Li, J., Z. Ge, and Z. He. 2014a. “Advancing membrane bioelectrochemical reactor (MBER) with hollow-fiber membranes installed in the cathode compartment.” J. Chem. Technol. Biotechnol. 89 (9): 1330–1336. https://doi.org/10.1002/jctb.4206.
Li, Z., X. Xu, B. Shao, S. Zhang, and F. Yang. 2014b. “Anammox granules formation and performance in a submerged anaerobic membrane bioreactor.” Chem. Eng. J. 254 (Oct): 9–16. https://doi.org/10.1016/j.cej.2014.04.068.
Liang, Z. H., A. Das, D. Beerman, and Z. Q. Hu. 2010. “Biomass characteristics of two types of submerged membrane bioreactors for nitrogen removal from wastewater.” Water Res. 44 (11): 3313–3320. https://doi.org/10.1016/j.watres.2010.03.013.
Lin, H., W. Peng, M. Zhang, J. Chen, H. Hong, and Y. Zhang. 2013. “A review on anaerobic membrane bioreactors: Applications, membrane fouling and future perspectives.” Desalination 314 (Apr): 169–188. https://doi.org/10.1016/j.desal.2013.01.019.
Liu, L., F. Zhao, J. Liu, and F. Yang. 2013. “Preparation of highly conductive cathodic membrane with graphene (oxide)/PPy and the membrane antifouling property in filtrating yeast suspensions in EMBR.” J. Membr. Sci. 437 (Jun): 99–107. https://doi.org/10.1016/j.memsci.2013.02.045.
Liu, Q. A., X. C. C. Wang, Y. J. Liu, H. L. Yuan, and Y. J. Du. 2010. “Performance of a hybrid membrane bioreactor in municipal wastewater treatment.” Desalination 258 (1–3): 143–147. https://doi.org/10.1016/j.desal.2010.03.024.
Logan, B. E., M. J. Wallack, K.-Y. Kim, W. He, Y. Feng, and P. E. Saikaly. 2015. “Assessment of microbial fuel cell configurations and power densities.” Environ. Sci. Technol. Lett. 2 (8): 206–214. https://doi.org/10.1021/acs.estlett.5b00180.
Luo, Y. L., Q. Jiang, H. H. Ngo, L. D. Nghiem, F. I. Hai, W. E. Price, J. Wang, and W. S. Guo. 2015. “Evaluation of micropollutant removal and fouling reduction in a hybrid moving bed biofilm reactor-membrane bioreactor system.” Bioresour. Technol. 191 (Sep): 355–359. https://doi.org/10.1016/j.biortech.2015.05.073.
Ma, J., Z. Wang, D. He, Y. Li, and Z. Wu. 2015. “Long-term investigation of a novel electrochemical membrane bioreactor for low-strength municipal wastewater treatment.” Water Res. 78 (Jul): 98–110. https://doi.org/10.1016/j.watres.2015.03.033.
Malaeb, L., K. P. Katuri, B. E. Logan, H. Maab, S. P. Nunes, and P. E. Saikaly. 2013. “A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment.” Environ. Sci. Technol. 47 (20): 11821–11828. https://doi.org/10.1021/es4030113.
Mannina, G., M. Capodici, A. Cosenza, and D. Di Trapani. 2018. “Nitrous oxide from integrated fixed-film activated sludge membrane bioreactor: Assessing the influence of operational variables.” Bioresour. Technol. 247 (Jan): 1221–1227. https://doi.org/10.1016/j.biortech.2017.09.083.
Mannina, G., M. Capodici, A. Cosenza, D. Di Trapani, V. A. Laudicina, and H. Ødegaard. 2017a. “Nitrous oxide from moving bed based integrated fixed film activated sludge membrane bioreactors.” J. Environ. Manage. 187 (Feb): 96–102. https://doi.org/10.1016/j.jenvman.2016.11.025.
Mannina, G., M. Capodici, A. Cosenza, D. Di Trapani, and G. Viviani. 2019. “The influence of solid retention time on IFAS-MBR systems: Analysis of system behavior.” Environ. Technol. 40 (14): 1840–1852. https://doi.org/10.1080/09593330.2018.1430855.
Mannina, G., M. Capodici, A. Cosenza, V. A. Laudicina, and D. Di Trapani. 2017b. “The influence of solid retention time on IFAS-MBR systems: Assessment of nitrous oxide emission.” J. Environ. Manage. 203 (Dec): 391–399. https://doi.org/10.1016/j.jenvman.2017.08.011.
Mannina, G., G. Di Bella, and G. Viviani. 2010. “Uncertainty assessment of a membrane bioreactor model using the GLUE methodology.” Biochem. Eng. J. 52 (2): 263–275. https://doi.org/10.1016/j.bej.2010.09.001.
Marbelia, L., M. R. Bilad, I. Passaris, V. Discart, D. Vandamme, A. Beuckels, K. Muylaert, and I. F. J. Vankelecom. 2014. “Membrane photobioreactors for integrated microalgae cultivation and nutrient remediation of membrane bioreactors effluent.” Bioresour. Technol. 163 (Jul): 228–235. https://doi.org/10.1016/j.biortech.2014.04.012.
Markou, G., and D. Georgakakis. 2011. “Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: A review.” Appl. Energy 88 (10): 3389–3401. https://doi.org/10.1016/j.apenergy.2010.12.042.
Mata, T. M., A. A. Martins, and N. S. Caetano. 2010. “Microalgae for biodiesel production and other applications: A review.” Renewable Sustainable Energy Rev. 14 (1): 217–232. https://doi.org/10.1016/j.rser.2009.07.020.
Matulova, Z., P. Hlavinek, and M. Drtil. 2010. “One-year operation of single household membrane bioreactor plant.” Water Sci. Technol. 61 (1): 217–226. https://doi.org/10.2166/wst.2010.785.
Meng, F., S. Zhang, Y. Oh, Z. Zhou, H.-S. Shin, and S.-R. Chae. 2017. “Fouling in membrane bioreactors: An updated review.” Water Res. 114 (May): 151–180. https://doi.org/10.1016/j.watres.2017.02.006.
Meng, F. G., S. R. Chae, A. Drews, M. Kraume, H. S. Shin, and F. L. Yang. 2009. “Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material.” Water Res. 43 (6): 1489–1512. https://doi.org/10.1016/j.watres.2008.12.044.
Mo, H., J. A. Oleszkiewicz, N. Cicek, and B. Rezania. 2005. “Incorporating membrane gas diffusion into a membrane bioreactor for hydrogenotrophic denitrification of groundwater.” Water Sci. Technol. 51 (6–7): 357–364. https://doi.org/10.2166/wst.2005.0657.
Mottet, A., I. Ramirez, H. Carrere, S. Deleris, F. Vedrenne, J. Jimenez, and J. P. Steyer. 2013. “New fractionation for a better bioaccessibility description of particulate organic matter in a modified ADM1 model.” Chem. Eng. J. 228 (Jul): 871–881. https://doi.org/10.1016/j.cej.2013.05.082.
Nakhate, P. H., N. T. Joshi, and K. V. Marathe. 2017. “A critical review of bioelectrochemical membrane reactor (BECMR) as cutting-edge sustainable wastewater treatment.” Rev. Chem. Eng. 33 (2): 143–161. https://doi.org/10.1515/revce-2016-0012.
Narayanasamy, S., E. E. L. Muller, A. R. Sheik, and P. Wilmes. 2015. “Integrated omics for the identification of key functionalities in biological wastewater treatment microbial communities.” Microb. Biotechnol. 8 (3): 363–368. https://doi.org/10.1111/1751-7915.12255.
Nerenberg, R. 2016. “The membrane-biofilm reactor (MBfR) as a counter-diffusional biofilm process.” Curr. Opin. Biotechnol. 38 (Apr): 131–136. https://doi.org/10.1016/j.copbio.2016.01.015.
Onesios, K. M., J. T. Yu, and E. J. Bouwer. 2009. “Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: A review.” Biodegradation 20 (4): 441–466. https://doi.org/10.1007/s10532-008-9237-8.
Pellegrin, M.-L., A. D. Greiner, J. Diamond, J. Aguinaldo, L. Padhye, S. Arabi, K. Min, M. Burbano, R. McCandless, and R. Shoaf. 2011. “Membrane processes.” Water Environ. Res. 83 (10): 1187–1294.
Perera, M. K., J. D. Englehardt, G. Tchobanoglous, and R. Shamskhorzani. 2017. “Control of nitrification/denitrification in an onsite two-chamber intermittently aerated membrane bioreactor with alkalinity and carbon addition: Model and experiment.” Water Res. 115 (May): 94–110. https://doi.org/10.1016/j.watres.2017.02.019.
Pikorova, T., Z. Matulova, P. HlavÍnek, and M. Drtil. 2009. “Operation of household Mbr Wwtp—Operational failures.” In Proc., Risk Management of Water Supply and Sanitation Systems, 283–292. Dordrecht, Netherlands: Springer.
Pollice, A., A. Brookes, B. Jefferson, and S. Judd. 2005. “Sub-critical flux fouling in membrane bioreactors—A review of recent literature.” Desalination 174 (3): 221–230. https://doi.org/10.1016/j.desal.2004.09.012.
Praveen, P., J. Y. P. Heng, and K. C. Loh. 2016. “Tertiary wastewater treatment in membrane photobioreactor using microalgae: Comparison of forward osmosis & microfiltration.” Bioresour. Technol. 222 (Dec): 448–457. https://doi.org/10.1016/j.biortech.2016.09.124.
Pronk, W., H. Palmquist, M. Biebow, and M. Boller. 2006. “Nanofiltration for the separation of pharmaceuticals from nutrients in source-separated urine.” Water Res. 40 (7): 1405–1412. https://doi.org/10.1016/j.watres.2006.01.038.
Radjenović, J., M. Petrović, and D. Barceló. 2009. “Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment.” Water Res. 43 (3): 831–841. https://doi.org/10.1016/j.watres.2008.11.043.
Reboleiro-Rivas, P., J. Martin-Pascual, B. Juarez-Jimenez, J. M. Poyatos, R. Vilchez-Vargas, S. E. Vlaeminck, B. Rodelas, and J. Gonzalez-Lopez. 2015. “Nitrogen removal in a moving bed membrane bioreactor for municipal sewage treatment: Community differentiation in attached biofilm and suspended biomass.” Chem. Eng. J. 277 (Oct): 209–218. https://doi.org/10.1016/j.cej.2015.04.141.
Ren, X., H. K. Shon, N. Jang, Y. G. Lee, M. Bae, J. Lee, K. Cho, and I. S. Kim. 2010. “Novel membrane bioreactor (MBR) coupled with a nonwoven fabric filter for household wastewater treatment.” Water Res. 44 (3): 751–760. https://doi.org/10.1016/j.watres.2009.10.013.
Rittmann, B. E., and P. L. McCarty. 2001. Environmental biotechnology: Principles and applications. New York: McGraw-Hill.
Rusten, B., O. Kolkinn, and H. Odegaard. 1997. “Moving bed biofilm reactors and chemical precipitation for high efficiency treatment of wastewater from small communities.” Water Sci. Technol. 35 (6): 71–79. https://doi.org/10.2166/wst.1997.0245.
Sabba, F., A. Terada, G. Wells, B. F. Smets, and R. Nerenberg. 2018. “Nitrous oxide emissions from biofilm processes for wastewater treatment.” Appl. Microbiol. Biotechnol. 102 (22): 9815–9829. https://doi.org/10.1007/s00253-018-9332-7.
Saddoud, A., M. Ellouze, A. Dhouib, and S. Sayadi. 2006. “A comparative study on the anaerobic membrane bioreactor performance during the treatment of domestic wastewaters of various origins.” Environ. Technol. 27 (9): 991–999. https://doi.org/10.1080/09593332708618712.
Sarioglu, M., G. Insel, N. Artan, and D. Orhon. 2008. “Modelling of long-term simultaneous nitrification and denitrification (SNDN) performance of a pilot scale membrane bioreactor.” Water Sci. Technol. 57 (11): 1825–1833. https://doi.org/10.2166/wst.2008.121.
Sarioglu, M., G. Insel, N. Artan, and D. Orhon. 2009. “Model evaluation of simultaneous nitrification and denitrification in a membrane bioreactor operated without an anoxic reactor.” J. Membr. Sci. 337 (1–2): 17–27. https://doi.org/10.1016/j.memsci.2009.03.015.
Satoh, H., H. Ono, B. Rulin, J. Kamo, S. Okabe, and K. I. Fukushi. 2004. “Macroscale and microscale analyses of nitrification and denitrification in biofilms attached on membrane aerated biofilm reactors.” Water Res. 38 (6): 1633–1641. https://doi.org/10.1016/j.watres.2003.12.020.
Shaker, S., A. Nemati, N. Montazeri-Najafabady, M. A. Mobasher, M. H. Morowvat, and Y. Ghasemi. 2015. “Treating urban wastewater: Nutrient removal by using immobilized green algae in batch cultures.” Int. J. Phytorem. 17 (12): 1177–1182. https://doi.org/10.1080/15226514.2015.1045130.
Skouteris, G., D. Hermosilla, P. Lopez, C. Negro, and A. Blanco. 2012. “Anaerobic membrane bioreactors for wastewater treatment: A review.” Chem. Eng. J. 198 (Aug): 138–148. https://doi.org/10.1016/j.cej.2012.05.070.
Slater, F. R., A. C. Singer, S. Turner, J. J. Barr, and P. L. Bond. 2011. “Pandemic pharmaceutical dosing effects on wastewater treatment: no adaptation of activated sludge bacteria to degrade the antiviral drug Oseltamivir (Tamiflu®) and loss of nutrient removal performance.” FEMS Microbiol. Lett. 315 (1): 17–22. https://doi.org/10.1111/j.1574-6968.2010.02163.x.
Sliekers, A. O., N. Derwort, J. L. C. Gomez, M. Strous, J. G. Kuenen, and M. S. M. Jetten. 2002. “Completely autotrophic nitrogen removal over nitrite in one single reactor.” Water Res. 36 (10): 2475–2482. https://doi.org/10.1016/S0043-1354(01)00476-6.
Song, K.-G., J. Cho, K.-W. Cho, S.-D. Kim, and K.-H. Ahn. 2010. “Characteristics of simultaneous nitrogen and phosphorus removal in a pilot-scale sequencing anoxic/anaerobic membrane bioreactor at various conditions.” Desalination 250 (2): 801–804. https://doi.org/10.1016/j.desal.2008.11.045.
Sukacova, K., M. Trtilek, and T. Rataj. 2015. “Phosphorus removal using a microalgal biofilm in a new biofilm photobioreactor for tertiary wastewater treatment.” Water Res. 71 (Mar): 55–63.
Sun, S.-P., C. P. I. Nàcher, B. Merkey, Q. Zhou, S.-Q. Xia, D.-H. Yang, J.-H. Sun, and B. F. Smets. 2010. “Effective biological nitrogen removal treatment processes for domestic wastewaters with Low C/N ratios: A review.” Environ. Eng. Sci. 27 (2): 111–126. https://doi.org/10.1089/ees.2009.0100.
Suneethi, S., and K. Joseph. 2011. “ANAMMOX process start up and stabilization with an anaerobic seed in Anaerobic Membrane Bioreactor (AnMBR).” Bioresour. Technol. 102 (19): 8860–8867. https://doi.org/10.1016/j.biortech.2011.06.082.
Sutton, P. M., H. Melcer, O. J. Schraa, and A. P. Togna. 2011. “Treating municipal wastewater with the goal of resource recovery.” Water Sci. Technol. 63 (1): 25–31. https://doi.org/10.2166/wst.2011.004.
Syron, E., and E. Casey. 2008. “Membrane-aerated biofilms for high rate biotreatment: Performance appraisal, engineering principles, scale-up, and development requirements.” Environ. Sci. Technol. 42 (6): 1833–1844. https://doi.org/10.1021/es0719428.
Tai, C. S., J. Snider-Nevin, J. Dragasevich, and J. Kempson. 2014. “Five years operation of a decentralized membrane bioreactor package plant treating domestic wastewater.” Water Pract. Technol. 9 (2): 206–214. https://doi.org/10.2166/wpt.2014.024.
Tan, T. W., and H. Y. Ng. 2008. “Influence of mixed liquor recycle ratio and dissolved oxygen on performance of pre-denitrification submerged membrane bioreactors.” Water Res. 42 (4–5): 1122–1132. https://doi.org/10.1016/j.watres.2007.08.028.
Tang, B., et al. 2016. “Essential factors of an integrated moving bed biofilm reactor–membrane bioreactor: Adhesion characteristics and microbial community of the biofilm.” Bioresour. Technol. 211 (Jul): 574–583. https://doi.org/10.1016/j.biortech.2016.03.136.
Tang, T. Y., and Z. Q. Hu. 2016. “A comparison of algal productivity and nutrient removal capacity between algal CSTR and algal MBR at the same light level under practical and optimal conditions.” Ecol. Eng. 93 (Aug): 66–72. https://doi.org/10.1016/j.ecoleng.2016.04.008.
Tao, Y., D.-W. Gao, Y. Fu, W.-M. Wu, and N.-Q. Ren. 2012. “Impact of reactor configuration on anammox process start-up: MBR versus SBR.” Bioresour. Technol. 104 (Jan): 73–80. https://doi.org/10.1016/j.biortech.2011.10.052.
Terada, A., K. Hibiya, J. Nagai, S. Tsuneda, and A. Hirata. 2003. “Nitrogen removal characteristics and biofilm analysis of a membrane-aerated biofilm reactor applicable to high-strength nitrogenous wastewater treatment.” J. Biosci. Bioeng. 95 (2): 170–178. https://doi.org/10.1016/S1389-1723(03)80124-X.
Tewari, P., R. Singh, V. Batra, and M. Balakrishnan. 2012. “Field testing of polymeric mesh and ash-based ceramic membranes in a membrane bioreactor (MBR) for decentralised sewage treatment.” Water SA 38 (5): 727–730. https://doi.org/10.4314/wsa.v38i5.11.
Tewari, P. K., R. K. Singh, V. S. Batra, and M. Balakrishnan. 2010. “Membrane bioreactor (MBR) for wastewater treatment: Filtration performance evaluation of low cost polymeric and ceramic membranes.” Sep. Purif. Technol. 71 (2): 200–204. https://doi.org/10.1016/j.seppur.2009.11.022.
Tian, Y., C. Ji, K. Wang, and P. Le-Clech. 2014. “Assessment of an anaerobic membrane bio-electrochemical reactor (AnMBER) for wastewater treatment and energy recovery.” J. Membr. Sci. 450 (Jan): 242–248. https://doi.org/10.1016/j.memsci.2013.09.013.
Tian, Y., H. Li, L. P. Li, X. Y. Su, Y. B. Lu, W. Zuo, and J. Zhang. 2015. “In-situ integration of microbial fuel cell with hollow-fiber membrane bioreactor for wastewater treatment and membrane fouling mitigation.” Biosens. Bioelectron. 64 (Feb): 189–195. https://doi.org/10.1016/j.bios.2014.08.070.
Tse, H. T., S. Luo, J. Li, and Z. He. 2016. “Coupling microbial fuel cells with a membrane photobioreactor for wastewater treatment and bioenergy production.” Bioprocess. Biosyst. Eng. 39 (11): 1703–1710. https://doi.org/10.1007/s00449-016-1645-2.
Tsushima, I., A. Michinaka, M. Matsuhashi, H. Yamashita, and S. Okamoto. 2014. “Nitrous oxide emitted from actual wastewater treatment plants with different treatment methods.” J. Water Environ. Technol. 12 (2): 191–199. https://doi.org/10.2965/jwet.2014.191.
Udert, K. M., and M. Wachter. 2012. “Complete nutrient recovery from source-separated urine by nitrification and distillation.” Water Res. 46 (2): 453–464. https://doi.org/10.1016/j.watres.2011.11.020.
USEPA. 2007. Biological nutrient removal processes and cost. Washington, DC: USEPA.
USEPA. 2009. An urgent call to action: Report of the state-EPA nutrient innovations task group. Washington, DC: USEPA.
USEPA. 2016. Status of nutrient requirements for NPDES-permitted facilities. Washington, DC: USEPA.
Van den Broeck, R., J. Van Dierdonck, P. Nijskens, C. Dotremont, P. Krzeminski, J. H. J. M. van der Graaf, J. B. van Lier, J. F. M. Van Impe, and I. Y. Smets. 2012. “The influence of solids retention time on activated sludge bioflocculation and membrane fouling in a membrane bioreactor (MBR).” J. Membr. Sci. 401 (May): 48–55. https://doi.org/10.1016/j.memsci.2012.01.028.
van der Star, W. R. L., A. I. Miclea, U. G. J. M. van Dongen, G. Muyzer, C. Picioreanu, and M. C. M. van Loosdrecht. 2008. “The membrane bioreactor: A novel tool to grow anammox bacteria as free cells.” Biotechnol. Bioeng. 101 (2): 286–294. https://doi.org/10.1002/bit.21891.
Vanwonterghem, I., P. D. Jensen, D. P. Ho, D. J. Batstone, and G. W. Tyson. 2014. “Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques.” Curr. Opin. Biotechnol. 27 (Jun): 55–64. https://doi.org/10.1016/j.copbio.2013.11.004.
Verrecht, B., C. James, E. Germain, R. Birks, A. Barugh, P. Pearce, and S. Judd. 2011. “Economical evaluation and operating experiences of a small-scale MBR for nonpotable reuse.” J. Environ. Eng. 138 (5): 594–600. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000505.
Verrecht, B., T. Maere, L. Benedetti, I. Nopens, and S. Judd. 2010. “Model-based energy optimisation of a small-scale decentralised membrane bioreactor for urban reuse.” Water Res. 44 (14): 4047–4056. https://doi.org/10.1016/j.watres.2010.05.015.
Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger, and D. Tilman. 1997. “Human alteration of the global nitrogen cycle: Sources and consequences.” Ecol. Appl. 7 (3): 737–750.
Wang, G., X. C. Xu, Z. Gong, F. Gao, F. L. Yang, and H. M. Zhang. 2016. “Study of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in an intermittent aeration membrane bioreactor.” Process Biochem. 51 (5): 632–641. https://doi.org/10.1016/j.procbio.2016.02.001.
Wang, J., and S. Wang. 2016. “Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review.” J. Environ. Manage. 182 (Nov): 620–640. https://doi.org/10.1016/j.jenvman.2016.07.049.
Wang, T., H. Zhang, F. Yang, S. Liu, Z. Fu, and H. Chen. 2009. “Start-up of the Anammox process from the conventional activated sludge in a membrane bioreactor.” Bioresour. Technol. 100 (9): 2501–2506. https://doi.org/10.1016/j.biortech.2008.12.011.
Wang, Y.-H., C.-M. Wu, W.-L. Wu, C.-P. Chu, Y.-J. Chung, and C.-S. Liao. 2013a. “Survey on nitrogen removal and membrane filtration characteristics of Chlorella vulgaris Beij. on treating domestic type wastewaters.” Water Sci. Technol. 68 (3): 695–704. https://doi.org/10.2166/wst.2013.291.
Wang, Y. K., G. P. Sheng, W. W. Li, Y. X. Huang, Y. Y. Yu, R. J. Zeng, and H. Q. Yu. 2011. “Development of a novel bioelectrochemical membrane reactor for wastewater treatment.” Environ. Sci. Technol. 45 (21): 9256–9261. https://doi.org/10.1021/es2019803.
Wang, Y. K., G. P. Sheng, B. J. Shi, W. W. Li, and H. Q. Yu. 2013b. “A novel electrochemical membrane bioreactor as a potential net energy producer for sustainable wastewater treatment.” Sci. Rep. 3 (May): 1864.
Wang, Z., and Z. Wu. 2009. “A review of membrane fouling in MBRs: Characteristics and role of sludge cake formed on membrane surfaces.” Sep. Sci. Technol. 44 (15): 3571–3596. https://doi.org/10.1080/01496390903182578.
Wilson, R. W., K. L. Murphy, P. M. Sutton, and S. L. Lackey. 1981. “Design and cost comparison of biological nitrogen removal processes.” J. (Water Pollut. Control Fed.) 53 (8): 1294–1302.
Wu, P., X. M. Ji, X. K. Song, and Y. L. Shen. 2013. “Nutrient removal performance and microbial community analysis of a combined ABR-MBR (CAMBR) process.” Chem. Eng. J. 232 (Oct): 273–279. https://doi.org/10.1016/j.cej.2013.07.085.
Wu, T. T., and J. D. Englehardt. 2016. “Mineralizing urban net-zero water treatment: Field experience for energy-positive water management.” Water Res. 106 (Dec): 352–363. https://doi.org/10.1016/j.watres.2016.10.015.
Xu, M., P. Li, T. Y. Tang, and Z. Q. Hu. 2015. “Roles of SRT and HRT of an algal membrane bioreactor system with a tanks-in-series configuration for secondary wastewater effluent polishing.” Ecol. Eng. 85 (Dec): 257–264. https://doi.org/10.1016/j.ecoleng.2015.09.064.
Yan, T., Y. Ye, H. Ma, Y. Zhang, W. Guo, B. Du, Q. Wei, D. Wei, and H. H. Ngo. 2018. “A critical review on membrane hybrid system for nutrient recovery from wastewater.” Chem. Eng. J. 348 (Sep): 143–156. https://doi.org/10.1016/j.cej.2018.04.166.
Yang, Q. Y., T. Yang, H. J. Wang, and K. Q. Liu. 2009a. “Filtration characteristics of activated sludge in hybrid membrane bioreactor with porous suspended carriers (HMBR).” Desalination 249 (2): 507–514. https://doi.org/10.1016/j.desal.2008.08.013.
Yang, S., F. Yang, Z. Fu, and R. Lei. 2009b. “Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on organic carbon and nitrogen removal.” Bioresour. Technol. 100 (8): 2369–2374. https://doi.org/10.1016/j.biortech.2008.11.022.
Yang, S., F. Yang, Z. Fu, T. Wang, and R. Lei. 2010. “Simultaneous nitrogen and phosphorus removal by a novel sequencing batch moving bed membrane bioreactor for wastewater treatment.” J. Hazard. Mater. 175 (1–3): 551–557. https://doi.org/10.1016/j.jhazmat.2009.10.040.
Yang, W., N. Cicek, and J. Ilg. 2006. “State-of-the-art of membrane bioreactors: Worldwide research and commercial applications in North America.” J. Membr. Sci. 270 (1): 201–211. https://doi.org/10.1016/j.memsci.2005.07.010.
Yu, C.-P., Z. Liang, A. Das, and Z. Hu. 2011. “Nitrogen removal from wastewater using membrane aerated microbial fuel cell techniques.” Water Res. 45 (3): 1157–1164. https://doi.org/10.1016/j.watres.2010.11.002.
Yu, K., and T. Zhang. 2012. “Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge.” PLoS One 7 (5): e38183. https://doi.org/10.1371/journal.pone.0038183.
Yun, H.-J., and D.-J. Kim. 2003. “Nitrite accumulation characteristics of high strength ammonia wastewater in an autotrophic nitrifying biofilm reactor.” J. Chem. Technol. Biotechnol. 78 (4): 377–383. https://doi.org/10.1002/jctb.751.
Zekker, I., E. Rikmann, T. Tenno, V. Lemmiksoo, A. Menert, L. Loorits, P. Vabamäe, M. Tomingas, and T. Tenno. 2012. “Anammox enrichment from reject water on blank biofilm carriers and carriers containing nitrifying biomass: operation of two moving bed biofilm reactors (MBBR).” Biodegradation 23 (4): 547–560. https://doi.org/10.1007/s10532-011-9532-7.
Zhang, C. Q., G. Z. Wang, and Z. Q. Hu. 2014a. “Changes in wastewater treatment performance and activated sludge properties of a membrane bioreactor at low temperature operation.” Environ. Sci. Processes Impacts 16 (9): 2199–2207. https://doi.org/10.1039/C4EM00174E.
Zhang, G. Y., H. M. Zhang, Y. J. Ma, G. G. Yuan, F. L. Yang, and R. Zhang. 2014b. “Membrane filtration biocathode microbial fuel cell for nitrogen removal and electricity generation.” Enzyme Microb. Technol. 60 (Jun): 56–63. https://doi.org/10.1016/j.enzmictec.2014.04.005.
Zhang, X. J., D. Li, Y. H. Liang, Y. L. Zhang, D. Fan, and J. Zhang. 2013. “Application of membrane bioreactor for completely autotrophic nitrogen removal over nitrite (CANON) process.” Chemosphere 93 (11): 2832–2838. https://doi.org/10.1016/j.chemosphere.2013.09.086.
Zhang, Z.-Z., Q.-Q. Zhang, J.-J. Xu, Z.-J. Shi, Q. Guo, X.-Y. Jiang, H.-Z. Wang, G.-H. Chen, and R.-C. Jin. 2016. “Long-term effects of heavy metals and antibiotics on granule-based anammox process: Granule property and performance evolution.” Appl. Microbiol. Biotechnol. 100 (5): 2417–2427. https://doi.org/10.1007/s00253-015-7120-1.
Zhou, G. W., Y. H. Zhou, G. Q. Zhou, L. Lu, X. K. Wan, and H. X. Shi. 2015. “Assessment of a novel overflow-type electrochemical membrane bioreactor (EMBR) for wastewater treatment, energy recovery and membrane fouling mitigation.” Bioresour. Technol. 196 (Nov): 648–655. https://doi.org/10.1016/j.biortech.2015.08.032.
Zhu, Y., Y. Zhang, H.-q. Ren, J.-j. Geng, K. Xu, H. Huang, and L.-l. Ding. 2015. “Physicochemical characteristics and microbial community evolution of biofilms during the start-up period in a moving bed biofilm reactor.” Bioresour. Technol. 180 (Mar): 345–351. https://doi.org/10.1016/j.biortech.2015.01.006.
Zuo, K., S. Liang, P. Liang, X. Zhou, D. Sun, X. Zhang, and X. Huang. 2015. “Carbon filtration cathode in microbial fuel cell to enhance wastewater treatment.” Bioresour. Technol. 185 (Jun): 426–430. https://doi.org/10.1016/j.biortech.2015.02.108.
Zuthi, M. F. R., W. S. Guo, H. H. Ngo, L. D. Nghiem, and F. I. Hai. 2013. “Enhanced biological phosphorus removal and its modeling for the activated sludge and membrane bioreactor processes.” Bioresour. Technol. 139 (Jul): 363–374. https://doi.org/10.1016/j.biortech.2013.04.038.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 146Issue 5May 2020

History

Published online: Feb 20, 2020
Published in print: May 1, 2020
Discussion open until: Jul 20, 2020

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Assistant Professor, Dept. of Civil Engineering, Stony Brook Univ., 2434 Computer Science, Stony Brook, NY 11794-4424. Email: [email protected]
Pejman Hadi Myavagh [email protected]
Postdoctoral Researcher, New York State Center for Clean Water Technology and Dept. of Chemistry, Stony Brook Univ., 104 Chemistry, Stony Brook, NY 11794-3400. Email: [email protected]
Sarah Lotfikatouli, S.M.ASCE [email protected]
Graduate Student, Dept. of Civil Engineering, Stony Brook Univ., 2434 Computer Science, Stony Brook, NY 11794-4424. Email: [email protected]
Benjamin S. Hsiao [email protected]
Distinguished Professor, Dept. of Chemistry, Stony Brook Univ., 104 Chemistry, Stony Brook, NY 11794-3400. Email: [email protected]
Harold W. Walker, M.ASCE [email protected]
Alena and David M. Schwaber Professor of Environmental Engineering, Dept. of Civil and Environmental Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609-2280 (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share