Technical Papers
Dec 9, 2019

Copper(II) Removal from Synthetic Wastewater Solutions Using Supported Liquid Membrane and Polymer Inclusion Membrane

Publication: Journal of Environmental Engineering
Volume 146, Issue 2

Abstract

The application of supported liquid membranes (SLMs) and polymer inclusion membranes (PIMs) for the transport of Cu(II) in a continuous extraction–re-extraction system using di-(2-hethylhexyl) phosphoric acid (D2EHPA) as carrier was examined. The SLM was prepared by soaking a support in D2EHPA-chloroform solution. Furthermore, a PIM was prepared by casting solution containing cellulose triacetate (CTA) as polymer, acetylated kraft lignin as filler, and 40% by weight D2EHPA as carrier and without added plasticizer. Lignin was incorporated into PIMs to enhance the mechanical properties of CTA in acidic media. Transport of Cu(II) ions through SLMs and PIMs was determined. The effect of feed pH, HNO3 concentration in strip phase, and D2EHPA concentration in membrane phase were studied. The optimum conditions to transport more than 68% of Cu(II) are, feed pH=4.5, HNO3 0.5 M in strip phase and 30% (v/v) of D2EHPA concentration in membrane phase. In the same initial conditions, the PIM containing 40% by weight D2EHPA assured the transport of 74% of Cu (II). The transport of Cu(II) through the SLM and PIM was investigated by evaluating the initial fluxes through the membranes, the recovery efficiency of each, and their stability after many cycles. The experiments demonstrated that the prepared PIM has better performance than the SLM, as proved by a better initial flow, better recovery efficiency, and higher stability. We also confirmed that the interdiffusion of Cu(II) through the PIM followed a kinetic law of first order.

Get full access to this article

View all available purchase options and get full access to this article.

References

Abdi, O., and M. Kazemi. 2015. “A review study of biosorption of heavy metals and comparison between different biosorbents.” J. Mater. Environ. Sci. 6 (5): 1386–1399.
Aguilar, J. C., M. Sanchez-Castellanos, E. R. de San Miguel, and J. Gyves. 2001. “Cd(II) and Pb(II) extraction and transport modeling in SLM and PIM systems using Kelex 100 as carrier.” J. Membr. Sci. 190 (1): 107–118. https://doi.org/10.1016/S0376-7388(01)00433-1.
Almeida, M. I. G. S., R. W. Cattrall, and S. D. Kolev. 2012. “Polymer inclusion membranes: Concept and applications.” Procedia Eng. 44: 681–682. https://doi.org/10.1016/j.proeng.2012.08.528.
Arslan, G., A. Tor, Y. Cengeloglu, and M. Ersoz. 2009. “Facilitated transport of Cr(III) through activated composite membrane containing di-(2-ethylhexyl)phosphoric acid (DEHPA) as carrier agent.” J. Hazard. Mater. 165 (1–3): 729–735. https://doi.org/10.1016/j.jhazmat.2008.10.050.
Asfaram, A., M. Ghaedi, S. Agarwal, I. Tyagi, and V. K. Gupta. 2015. “Removal of basic dye Auramine-O by ZnS:Cu nanoparticles loaded on activated carbon: Optimization of parameters using response surface methodology with central composite design.” RSC Adv. 5 (24): 18438–18450. https://doi.org/10.1039/C4RA15637D.
Ayala-Bribiesca, E., M. Araya-Farías, G. Pourcelly, and L. Bazinet. 2006a. “Effect of concentrate solution pH and mineral composition of a whey protein diluate solution on membrane fouling formation during conventional electrodialysis.” J. Membr. Sci. 280 (1–2): 790–801. https://doi.org/10.1016/j.memsci.2006.02.036.
Ayala-Bribiesca, E., G. Pourcelly, and L. Bazinet. 2006b. “Nature identification and morphology characterization of cation-exchange membrane fouling during conventional electrodialysis.” J. Colloid Interface Sci. 300 (2): 663–672. https://doi.org/10.1016/j.jcis.2006.04.035.
Bayou, N., O. Arous, M. Amara, and H. Kerdjoudj. 2010. “Elaboration and characterization of a plasticized cellulose triacetate membrane containing trioctylphosphine oxyde (TOPO): Application to the transport of uranium and molybdenum ions.” C. R. Chim. 13 (11): 1370–1376. https://doi.org/10.1016/j.crci.2010.04.015.
Casademont, C., G. Pourcelly, and L. Bazinet. 2007. “Effect of magnesium/calcium ratio in solutions subjected to electrodialysis: Characterization of cation-exchange membrane fouling.” J. Colloid Interface Sci. 315 (2): 544–554. https://doi.org/10.1016/j.jcis.2007.06.056.
Casademont, C., G. Pourcelly, and L. Bazinet. 2008. “Effect of magnesium/calcium ratios in solutions treated by electrodialysis: Morphological characterization and identification of anion-exchange membrane fouling.” J. Colloid Interface Sci. 322 (1): 215–223. https://doi.org/10.1016/j.jcis.2008.02.068.
Chakraborty, M., C. Bhattacharya, and S. Datta. 2003. “Mathematical modeling of simultaneous copper(II) and nickel(II) extraction from wastewater by emulsion liquid membranes.” Sep. Sci. Technol. 38 (9): 2081–2106. https://doi.org/10.1081/SS-120020136.
Chang, S. H., T. T. Teng, and N. Ismail. 2010. “Extraction of Cu(II) from aqueous solutions by vegetable oil-based organic solvents.” J. Hazard. Mater. 181 (1–3): 868–872. https://doi.org/10.1016/j.jhazmat.2010.05.093.
Danesi, P. R., L. Reichley-Yinger, and P. G. Rickert. 1987. “Lifetime of supported liquid membranes: The influence of interfacial properties, chemical composition and water transport on the long-term stability of the membranes.” J. Membr. Sci. 31 (2–3): 117–145. https://doi.org/10.1016/S0376-7388(00)82223-1.
Devaraj, M., M. R. Saravanan, R. K. Deivasigamani, V. K. Gupta, F. Gracia, and A. Jayadevan. 2016. “Preparation of novel shape Cu and Cu/Cu2O nanoparticles for the determination of dopamine and paracetamol.” J. Mol. Liq. 221 (Sep): 930–941. https://doi.org/10.1016/j.molliq.2016.06.028.
Djane, K. N., K. Ndung’u, F. Malcus, G. Johansson, and L. Mathiasson. 1997. “Supported liquid membrane enrichment using an organophosphorus extractant for analytical trace metal determinations in river waters.” Fresenius J. Anal. Chem. 358 (7–8): 822–827. https://doi.org/10.1007/s002160050516.
Elmansouri, N. E., Q. Yuan, and F. Huang. 2011. “Characterization of alkaline lignins for use in phenol-formaldehyde and epoxy resins.” Bioresources 6 (3): 2647.
Fu, F., and Q. Wang. 2011. “Removal of heavy metal ions from wastewaters: A review.” J. Environ. Manage. 92 (3): 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011.
Gajda, B., and M. B. Bogacki. 2012. “The application of polymer inclusive membranes for removal of heavy metal ions from waste solutions.” J. Achiev. Mater. Manuf. Eng. 55 (2): 673–678.
Ghaedi, M., S. Hajjati, Z. Mahmudi, I. Tyagi, S. Agarwal, A. Maity, and V. K. Gupta. 2016. “Modeling of competitive ultrasonic assisted removal of the dyes—Methylene blue and Safranin-O using Fe3O4 nanoparticles.” Chem. Eng. J. 284 (May): 687–697. https://doi.org/10.1016/j.cej.2014.12.090.
Gherasim, C. V. I., G. Bourceanu, R. I. Rolariu, and C. Arsene. 2011. “Removal of lead(II) from aqueous solutions by a polyvinyl-chloride inclusion membrane without added plasticizer.” J. Membr. Sci. 377 (1–2): 167–174. https://doi.org/10.1016/j.memsci.2011.04.042.
Gherrou, A., H. Kerdjoudj, R. Molinari, and E. Drioli. 2002. “Removal of silver and copper ions from acidic thiourea solutions with a supported liquid membrane containing D2EHPA as carrier.” Sep. Purif. Technol. 28 (3): 235–244. https://doi.org/10.1016/S1383-5866(02)00080-1.
Guo-Xin, S., C. Yu, Si-Xiu, S., Y. Yong-Hui, and Y. Yan-Zhao. 2000. “Interfacial activity of HDEHP and kinetics of nickel extraction in various diluents.” Solvent Extr. Ion Exch. 18 (3): 517–531. https://doi.org/10.1080/07366290008934695.
Gyves, J., A. M. Hernández-Andaluz, and E. R. San Miguel. 2006. “LIX®-loaded polymer inclusion membrane for copper(II) transport: 2. Optimization of the efficiency factors (permeability, selectivity, and stability) for LIX® 84-I.” J. Membr. Sci. 268 (2): 142–149. https://doi.org/10.1016/j.memsci.2005.05.027.
Gyves, J., and E. R. San Miguel. 1999. “Metal ion separations by supported liquid membranes.” Ind. Eng. Chem. Res. 38 (6): 2182–2202. https://doi.org/10.1021/ie980374p.
Hajarabeevi, N., I. Mohammed Bilal, D. Easwaramoorthy, and K. Palanivelu. 2009. “Facilitated transport of cationic dyes through a supported liquid membrane with D2EHPA as carrier.” Desalination 245 (1–3): 19–27. https://doi.org/10.1016/j.desal.2008.06.009.
Kavitha, N., and K. Palanivelu. 2012. “Recovery of copper(II) through polymer inclusion membrane with di (2-ethylhexyl) phosphoric acid as carrier from e-waste.” J. Membr. Sci. 415–416 (Oct): 663–669. https://doi.org/10.1016/j.memsci.2012.05.047.
Kebiche-Senhadji, O., L. Mansouri, and M. Benamor. 2015. “Consideration of polymer inclusion membranes containing D2EHPA for toxic metallic ion (Pb2+) extraction recovery.” In Vol. 83 of Proc., 5th Int. Conf. on Environment Science and Engineering. Singapore: International Proceedings of Chemical, Biological and Environmental Engineering.
Khania, H., M. K. Rofouei, P. Arab, V. K. Gupta, and Z. Vafaei. 2010. “Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: Application to potentiometric monitoring of mercury ion(II).” J. Hazard. Mater. 183 (1–3): 402–409. https://doi.org/10.1016/j.jhazmat.2010.07.039.
Kocherginsky, N. M., Q. Yang, and L. Seelam. 2007. “Recent advances in supported liquid membrane technology.” Sep. Purif. Technol. 53 (2): 171–177. https://doi.org/10.1016/j.seppur.2006.06.022.
Konczyk, J., C. Kozlowski, and W. Walkowiak. 2010. “Removal of chromium(III) from acidic aqueous solution by polymer inclusion membranes with D2EHPA and Aliquat 336.” Desalination 263 (1): 211–216. https://doi.org/10.1016/j.desal.2010.06.061.
Kozlowski, C. A. 2006. “Facilitated transport of metal ions through composite and polymer inclusion membranes.” Desalination 198 (1–3): 132–140. https://doi.org/10.1016/j.desal.2006.02.004.
Kurniawan, T. A., G. Y. S. Chan, W. H. Loa, and S. Babel. 2006. “Physico-chemical treatment techniques for wastewater laden with heavy metals.” Chem. Eng. J. 118 (1–2): 83–98. https://doi.org/10.1016/j.cej.2006.01.015.
Marzouk, I., C. Hannachi, L. Dammak, and B. Hamrouni. 2012. “Removal of chromium by adsorption on activated alumina.” Desalin. Water Treat. 26 (1–3): 279–286. https://doi.org/10.5004/dwt.2011.1833.
Merdaw, A. A., A. O. Sharif, and G. A. W. Derwish. 2010. “Water permeability in polymeric membranes, Part I.” Desalination 260 (1–3): 180–192. https://doi.org/10.1016/j.desal.2010.04.042.
Mulder, M. 1991. Basic principles in membrane technology. 2nd ed. Dordrecht, Netherlands: Kluwer Academic.
Ncib, S., A. Barhoumi, W. Bouguerra, C. Larchet, L. Dammak, B. Hamrouni, and E. Elaloui. 2018. “Preparation and characterization of cellulose triacetate polymer inclusion membrane blended with acetylated kraft lignin: Effect of AKL and application to the copper(II) extraction from acidic media.” Desalin. Water Treat. 104: 263–272. https://doi.org/10.5004/dwt.2018.21924.
Neplenbroek, A. M., D. Bargeman, and C. A. Smolders. 1992. “Supported liquid membranes: Instability effects.” J. Membr. Sci. 67 (2–3): 121–132. https://doi.org/10.1016/0376-7388(92)80020-K.
Nevárez, L. A. M., L. B. Casarrubias, A. Celzard, V. Fierro, V. T. Muñoz, A. C. Davila, J. R. T. Lubian, and G. G. Sánchez. 2011. “Biopolymer-based nanocomposites: Effect of lignin acetylation in cellulose triacetate films.” Sci. Technol. Adv. Mater. 12 (4): 045006. https://doi.org/10.1088/1468-6996/12/4/045006.
Nghiem, L. D., P. Mornane, I. D. Potter, J. M. Perera, R. W. Cattrall, and S. D. Kolev. 2006. “Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs).” J. Membr. Sci. 281 (1–2): 7–41. https://doi.org/10.1016/j.memsci.2006.03.035.
Parhi, P. K., and K. Sarangi. 2008. “Separation of copper, zinc, cobalt and nickel ions by supported liquid membrane technique using LIX 84I, TOPS-99 and Cyanex 272.” Sep. Purif. Technol. 59 (2): 169–174. https://doi.org/10.1016/j.seppur.2007.06.008.
Paugam, M. F., and J. Buffle. 1998. “Comparison of carrier-facilitated copper(II) ion transport mechanisms in a supported liquid membrane and in a plasticized cellulose triacetate membrane.” J. Membr. Sci. 147 (2): 207–215. https://doi.org/10.1016/S0376-7388(98)00102-1.
Religa, P., J. Rajewski, and P. Gierycz. 2015. “Advantages and disadvantages of SLM and PIM systems used for chromium(III) separation from aqueous solutions.” Pol. J. Environ. Stud. 24 (3): 1283–1290.
Salazar-Alvarez, G., A. N. Bautista-Flores, E. R. San Miguel, and M. Muhammeda. 2005. “Transport characterisation of a PIM system used for the extraction of Pb(II) using D2EHPA as carrier.” J. Membr. Sci. 250 (1–2): 247–257.
Saravanan, R., V. K. Gupta, T. Prakash, V. Narayanan, and A. Stephen. 2013a. “Synthesis, characterization and photocatalytic activity of novel Hg doped ZnO nanorods prepared by thermal decomposition method.” J. Mol. Liq. 178 (Feb): 88–93. https://doi.org/10.1016/j.molliq.2012.11.012.
Saravanan, R., S. Joicy, V. K. Gupta, V. Narayanane, and A. Stephen. 2013b. “Visible light induced degradation of methylene blue using CeO2/V2O5 and CeO2/CuO catalysts.” Mater. Sci. Eng. C 33 (8): 4725–4731. https://doi.org/10.1016/j.msec.2013.07.034.
Saravanan, R., S. Karthikeyan, V. K. Gupta, G. Sekaran, V. Narayanan, and A. Stephen. 2013c. “Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination.” Mater. Sci. Eng. C 33 (1): 91–98. https://doi.org/10.1016/j.msec.2012.08.011.
Saravanan, R., N. Karthikeyana, V. K. Gupta, E. Thirumal, P. Thangadurai, V. Narayanan, and A. Stephen. 2013d. “ZnO/Ag nanocomposite: An efficient catalyst for degradation studies of textile effluents under visible light.” Mater. Sci. Eng. C 33 (4): 2235–2244. https://doi.org/10.1016/j.msec.2013.01.046.
Saravanan, R., M. Mansoob Khan, F. Gracia, J. Qin, V. K. Gupta, and S. Arumainathan. 2016a. “Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite.” Sci. Rep. 6 (1): 31641. https://doi.org/10.1038/srep31641.
Saravanan, R., M. Mansoob Khan, V. K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, and A. Stephen. 2015a. “ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents.” J. Colloid Interface Sci. 452 (Aug): 126–133. https://doi.org/10.1016/j.jcis.2015.04.035.
Saravanan, R., M. Mansoob Khan, V. K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, and A. Stephen. 2015b. “ZnO/Ag/Mn2O3 nanocomposite for visible light-induced industrial textile effluent degradation, uric acid and ascorbic acid sensing and antimicrobial activity.” RSC Adv. 5: 34645–34651. https://doi.org/10.1039/C5RA02557E.
Saravanan, R., E. Sacari, F. Gracia, M. Mansoob Khan, E. Mosquera, and V. K. Gupta. 2016b. “Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes.” J. Mol. Liq. 221 (Jan): 930–941. https://doi.org/10.1016/j.molliq.2016.06.074.
Saravanan, R., E. Thirumal, V. K. Gupta, V. Narayanan, and A. Stephen. 2013e. “The photocatalytic activity of ZnO prepared by simple thermal decomposition method at various temperatures.” J. Mol. Liq. 177 (Jan): 394–401. https://doi.org/10.1016/j.molliq.2012.10.018.
Tayeb, R., C. Fontas, M. Dhahbi, S. Tingry, and P. Seta. 2005. “Cd(II) transport across supported liquid membranes (SLM) and polymeric plasticized membranes (PPM) mediated by Lasalocid A.” Sep. Purif. Technol. 42 (2): 189–193. https://doi.org/10.1016/j.seppur.2004.07.006.
Tor, A., G. Arslan, H. Muslu, A. Celiktas, Y. Cengeloglu, and M. Ersozb. 2009. “Facilitated transport of Cr(III) through polymer inclusion membrane with di(2-ethylhexyl)phosphoric acid (DEHPA).” J. Membr. Sci. 329 (1–2): 169–174. https://doi.org/10.1016/j.memsci.2008.12.032.
Venkateswaran, P., A. N. Gopalakrishnan, and K. Palanivelu. 2007. “Di(2-ethylhexyl)phosphoric acid-coconut oil supported liquid membrane for the separation of copper ions from copper plating wastewater.” J. Environ. Sci. 19 (12): 1446–1453. https://doi.org/10.1016/S1001-0742(07)60236-8.
Yang, X. J., A. G. Fane, and K. Soldenhoff. 2003. “Comparison of liquid membrane processes for metal separations: Permeability, stability, and selectivity.” Ind. Eng. Chem. Res. 42 (2): 392–403. https://doi.org/10.1021/ie011044z.
Zhang, B., and G. Gozzehn. 2003. “Facilitated transport of FeIII and CuII ions through supported liquid membranes.” Colloids Surf. A 215 (1–3): 67–76. https://doi.org/10.1016/S0927-7757(02)00419-3.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 146Issue 2February 2020

History

Received: Feb 14, 2018
Accepted: Jun 26, 2019
Published online: Dec 9, 2019
Published in print: Feb 1, 2020
Discussion open until: May 9, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate, U.R Matériaux, Environnement et Energie (ME2) (UR 14 ES26), Département de chimie, Faculté des Sciences de Gafsa, Université de Gafsa, Campus universitaire Sidi Ahmed Zarroug, Gafsa 2112, Tunisie. Email: [email protected]
A. Barhoumi [email protected]
Ph.D. Candidate, U.R Matériaux, Environnement et Energie (ME2) (UR 14 ES26), Département de chimie, Faculté des Sciences de Gafsa, Université de Gafsa, Campus universitaire Sidi Ahmed Zarroug, Gafsa 2112, Tunisie. Email: [email protected]
W. Bouguerra [email protected]
Associate Professor, U.R Matériaux, Environnement et Energie (ME2) (UR 14 ES26), Département de chimie, Faculté des Sciences de Gafsa, Université de Gafsa, Campus universitaire Sidi Ahmed Zarroug, Gafsa 2112, Tunisie (corresponding author). Email: [email protected]
Professor, Institut de Chimie et des Matériaux Paris-EST (ICMPE), UMR 7182 CNRS, Université Paris-Est Créteil, 2 Rue Henri Dunant, Thiais 94320, France. Email: [email protected]
Professor, Institut de Chimie et des Matériaux Paris-EST (ICMPE), UMR 7182 CNRS, Université Paris-Est Créteil, 2 Rue Henri Dunant, Thiais 94320, France. Email: [email protected]
B. Hamrouni [email protected]
Professor, U.R Traitement et dessalement des eaux, Département de chimie, Faculté des sciences de Tunis, Manar II 2092, Tunisie. Email: [email protected]
Professor, U.R Matériaux, Environnement et Energie (ME2) (UR 14 ES26), Département de chimie, Faculté des Sciences de Gafsa, Université de Gafsa, Campus universitaire Sidi Ahmed Zarroug, Gafsa 2112, Tunisie. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share