Abstract

Homoacetogenesis and methanogenesis, which usually occur during anaerobic trichloroethene (TCE) dechlorination, affect the removal of TCE and its daughter products. This study develops a one-dimensional, multispecies H2-based biofilm model to simulate the interactions among six solid biomass species [Dehalococcoides, Geobacter, methanogens, homoacetogens, inert biomass (IB), and extracellular polymeric substances (EPS)] and 10 dissolved chemical species [TCE, dichloroethene (DCE), vinyl chloride (VC), ethene, hydrogen (H2), methane, acetate, bicarbonate, utilization associated products (UAP), and biomass associated products (BAP)]. To evaluate and parameterize the model, parameter values from the literature were input into the model to simulate conditions reported for an experiment. The biomass species distribution in the biofilm and the chemical species concentrations in the reactor effluent at a steady state were generally consistent between the experiments and the model. The predicted 15-μm biofilm consisted of three layers, each dominated by a different active biomass type: homoacetogens in the layer next to the membrane, Geobacter in the biofilm surface layer (next to the water), and Dehalococcoides in-between.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors gratefully thank the US Department of Defense’s Strategic Environmental Research and Development Program (SERDP) for funding the research through Project No. ER-2721.

References

Aulenta, F., J. M. Gossett, M. P. Papini, S. Rossetti, and M. Majone. 2005. “Comparative study of methanol, butyrate, and hydrogen as electron donors for long-term dechlorination of tetrachloroethene in mixed anerobic cultures.” Biotechnol. Bioeng. 91 (6): 743–753. https://doi.org/10.1002/bit.20569.
Chambon, J., G. Lemming, M. Broholm, P. J. Binning, and P. L. Bjerg. 2009. Model assessment of reductive dechlorination as a remediation technology for contaminant sources in fractured clay: Modeling Tool Delrepport II. Copenhagen, Denmark: Danish Environmental Protection Agency.
Chambon, J. C., P. L. Bjerg, C. Scheutz, J. Bælum, R. Jakobsen, and P. J. Binning. 2013. “Review of reactive kinetic models describing reductive dechlorination of chlorinated ethenes in soil and groundwater.” Biotechnol. Bioeng. 110 (1): 1–23. https://doi.org/10.1002/bit.24714.
Chau, K. W., and Y. W. Jiang. 2002. “Three-dimensional pollutant transport model for the Pearl River estuary.” Water Res. 36 (8): 2029–2039. https://doi.org/10.1016/S0043-1354(01)00400-6.
Christ, J. A., and L. M. Abriola. 2007. “Modeling metabolic reductive dechlorination in dense non-aqueous phase liquid source-zones.” Adv. Water Resour. 30 (6–7): 1547–1561. https://doi.org/10.1016/j.advwatres.2006.05.024.
Chung, J., R. Krajmalnik-Brown, and B. E. Rittmann. 2008. “Bioreduction of trichloroethene using a hydrogen-based membrane biofilm reactor.” Environ. Sci. Technol. 42 (2): 477–483. https://doi.org/10.1021/es702422d.
Chung, J., and B. E. Rittmann. 2008. “Simultaneous bio-reduction of trichloroethene, trichloroethane, and chloroform using a hydrogen-based membrane biofilm reactor.” Water Sci. Technol. 58 (3): 495–501. https://doi.org/10.2166/wst.2008.432.
Clapp, L. W., M. J. Semmens, P. J. Novak, and R. M. Hozalski. 2004. “Model for in situ perchloroethene dechlorination via membrane-delivered hydrogen.” J. Environ. Eng. 130 (11): 1367–1381. https://doi.org/10.1061/(ASCE)0733-9372(2004)130:11(1367).
Cupples, A. M., A. M. Spormann, and P. L. McCarty. 2004. “Vinyl chloride and cis-dichloroethene dechlorination kinetics and microorganism growth under substrate limiting conditions.” Environ. Sci. Technol. 38 (4): 1102–1107. https://doi.org/10.1021/es0348647.
Delgado, A. G., P. Parameswaran, D. Fajardo-Williams, R. U. Halden, and R. Krajmalnik-Brown. 2012. “Role of bicarbonate as a pH buffer and electron sink in microbial dechlorination of chloroethenes.” Microb. Cell Fact. 11 (1): 128. https://doi.org/10.1186/1475-2859-11-128.
Dugat-Bony, E., C. Biderre-Petit, F. Jaziri, M. M. David, J. Denonfoux, D. Y. Lyon, J. Y. Richard, C. Curvers, D. Boucher, and T. M. Vogel. 2012. “In situ TCE degradation mediated by complex dehalorespiring communities during biostimulation processes.” Microb. Biotechnol. 5 (5): 642–653. https://doi.org/10.1111/j.1751-7915.2012.00339.x.
Eberl, H., E. Morgenroth, D. Noguera, C. Picioreanu, B. E. Rittmann, M. van Loosdrecht, and O. Wanner. 2006. Mathematical modeling of biofilms. London: IWA Publishing.
Fennell, D. E., and J. M. Gossett. 1998. “Modeling the production of and competition for hydrogen in a dechlorinating culture.” Environ. Sci. Technol. 32 (16): 2450–2460. https://doi.org/10.1021/es980136l.
He, J., V. F. Holmes, P. K. Lee, and L. Alvarez-Cohen. 2007. “Influence of vitamin B12 and cocultures on the growth of Dehalococcoides isolates in defined medium.” Appl. Environ. Microbiol. 73 (9): 2847–2853. https://doi.org/10.1128/AEM.02574-06.
He, J., K. M. Ritalahti, K.-L. Yang, S. S. Koenigsberg, and F. E. Löffler. 2003. “Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium.” Nature. 424 (6944): 62. https://doi.org/10.1038/nature01717.
He, J., Y. Sung, R. Krajmalnik-Brown, K. M. Ritalahti, and F. E. Löffler. 2005. “Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)-and 1, 2-dichloroethene-respiring anaerobe.” Environ. Microbiol. 7 (9): 1442–1450. https://doi.org/10.1111/j.1462-2920.2005.00830.x.
Huang, D., and J. G. Becker. 2009. “Determination of intrinsic monod kinetic parameters for two heterotrophic tetrachloroethene (PCE)-respiring strains and insight into their application.” Biotechnol. Bioeng. 104 (2): 301–311. https://doi.org/10.1002/bit.22421.
Johnson, D. R., A. Nemir, G. L. Andersen, S. H. Zinder, and L. Alvarez-Cohen. 2009. “Transcriptomic microarray analysis of corrinoid responsive genes in Dehalococcoides ethenogenes strain 195.” FEMS Microbiol. Lett. 294 (2): 198–206. https://doi.org/10.1111/j.1574-6968.2009.01569.x.
Kotsyurbenko, O. R., M. V. Glagolev, A. N. Nozhevnikova, and R. Conrad. 2001. “Competition between homoacetogenic bacteria and methanogenic archaea for hydrogen at low temperature.” FEMS Microbiol. Ecol. 38 (2–3): 153–159. https://doi.org/10.1111/j.1574-6941.2001.tb00893.x.
Lang, M. M., P. V. Roberts, and L. Semprini. 1997. “Model simulations in support of field scale design and operation of bioremediation based on cometabolic degradation.” Ground Water. 35 (4): 565–573. https://doi.org/10.1111/j.1745-6584.1997.tb00121.x.
Leaist, D. G., and P. A. Lyons. 1981. “Multicomponent diffusion of electrolytes with incomplete dissociation. Diffusion in a buffer solution.” J. Phys. Chem. 85 (12): 1756–1762. https://doi.org/10.1021/j150612a033.
Leveque, R. J. 2007. Finite difference methods for ordinary and partial differential equations: Steady-state and time-dependent problems, 98. Philadelphia, PA: SIAM.
Maharajh, D. M., and J. Walkley. 1972. “Lowering of the saturation solubility of oxygen by the presence of another gas.” Nature. 236 (5343): 165. https://doi.org/10.1038/236165a0.
Matteucci, F., C. Ercole, and M. del Gallo. 2015. “A study of chlorinated solvent contamination of the aquifers of an industrial area in central Italy: A possibility of bioremediation.” Front. Microbiol. 6: 924. https://doi.org/10.3389/fmicb.2015.00924.
Maymó-Gatell, X., Y.-T. Chien, J. M. Gossett, and S. H. Zinder. 1997. “Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethane.” Science 276 (5318): 1568–1571. https://doi.org/10.1126/science.276.5318.1568.
Maymó-Gatell, X., V. Tandoi, J. M. Gossett, and S. H. Zinder. 1995. “Characterization of an H2-utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl chloride and ethene in the absence of methanogenesis and acetogenesis.” Appl. Environ. Microbiol. 61 (11): 3928–3933.
Moran, M. J., J. S. Zogorski, and P. J. Squillace. 2007. “Chlorinated solvents in groundwater of the United States.” Environ. Sci. Technol. 41 (1): 74–81. https://doi.org/10.1021/es061553y.
Mundle, S. O., T. Johnson, G. Lacrampe-Couloume, A. Pérez-de-Mora, M. Duhamel, E. A. Edwards, M. L. McMaster, E. Cox, K. Révész, and B. Sherwood Lollar. 2012. “Monitoring biodegradation of ethene and bioremediation of chlorinated ethenes at a contaminated site using compound-specific isotope analysis (CSIA).” Environ. Sci. Technol. 46 (3): 1731–1738. https://doi.org/10.1021/es202792x.
Ni, B. J., H. Liu, Y. Q. Nie, R. J. Zeng, G. C. Du, J. Chen, and H. Q. Yu. 2011. “Coupling glucose fermentation and homoacetogenesis for elevated acetate production: Experimental and mathematical approaches.” Biotechnol. Bioeng. 108 (2): 345–353. https://doi.org/10.1002/bit.22908.
Picioreanu, C., M. C. Van Loosdrecht, and J. J. Heijnen. 2000. “Effect of diffusive and convective substrate transport on biofilm structure formation: A two-dimensional modeling study.” Biotechnol. Bioeng. 69 (5): 504–515. https://doi.org/10.1002/1097-0290(20000905)69:5%3C504::AID-BIT5%3E3.0.CO;2-S.
Rittmann, B. E., J. P. Boltz, D. Brockmann, G. T. Daigger, E. Morgenroth, K. H. Sørensen, I. Takács, M. van Loosdrecht, and P. A. Vanrolleghem. 2018. “A framework for good biofilm reactor modeling practice (GBRMP).” Water Sci. Technol. 77 (5): 1149–1164. https://doi.org/10.2166/wst.2018.021.
Rittmann, B. E., and P. L. McCarty. 2001. Environmental biotechnology: Principles and applications. New York: McGraw-Hill.
Semprini, L., and P. L. McCarty. 1992. “Comparison between model simulations and field results for in-situ biorestoration of chlorinated aliphatics. Part II: Cometabolic transformations.” Ground Water. 30 (1): 37–44. https://doi.org/10.1111/j.1745-6584.1992.tb00809.x.
Smith, G. D. 1985. Numerical solution of partial differential equations: Finite difference methods. New York: Oxford University Press.
Stewart, P. S. 1993. “A model of biofilm detachment.” Biotechnol. Bioeng. 41 (1): 111–117. https://doi.org/10.1002/bit.260410115.
Sung, Y., K. E. Fletcher, K. M. Ritalahti, R. P. Apkarian, N. Ramos-Hernández, R. A. Sanford, N. M. Mesbah, and F. E. Löffler. 2006. “Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium.” Appl. Environ. Microbiol. 72 (4): 2775–2782. https://doi.org/10.1128/AEM.72.4.2775-2782.2006.
Tang, Y., R. Krajmalnik-Brown, and B. E. Rittmann. 2013. “Modeling trichloroethene reduction in a hydrogen-based biofilm.” Water Sci. Technol. 68 (5): 1158–1163. https://doi.org/10.2166/wst.2013.362.
Tang, Y., H. Zhao, A. K. Marcus, R. Krajmalnik-Brown, and B. E. Rittmann. 2012. “A steady-state biofilm model for simultaneous reduction of nitrate and perchlorate, Part 1: Model development and numerical solution.” Environ. Sci. Technol. 46 (3): 1598–1607. https://doi.org/10.1021/es203129s.
Thomas, J. W. 2013. Numerical partial differential equations: Finite difference methods. New York: Springer.
Travis, B. J., and N. D. Rosenberg. 1997. “Modeling in situ bioremediation of TCE at Savannah River: Effects of product toxicity and microbial interactions on TCE degradation.” Environ. Sci. Technol. 31 (11): 3093–3102. https://doi.org/10.1021/es9610186.
USEPA. 2009. “National primary drinking water regulations.” Accessed June 12, 2018. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations.
Varfolomeyev, S., S. Kalyuzhnyy, and S. Spivak. 1989. “Kinetic regularities of methane production by a methanogenic association.” Appl. Environ. Microbiol. 22 (3): 351–360. https://doi.org/10.1007/BF02921766.
Vavilin, V., L. Y. Lokshina, S. Rytov, O. Kotsyurbenko, A. Nozhevnikova, and S. Parshina. 1997. “Modelling methanogenesis during anaerobic conversion of complex organic matter at low temperatures.” Water Sci. Technol. 36 (6–7): 531–538. https://doi.org/10.2166/wst.1997.0633.
Wen, L., Y. Zhang, Y. Pan, W. Wu, S. Meng, C. Zhou, Y. Tang, P. Zhewng, and H Zhao. 2015. “The roles of methanogens and acetogens in dechlorination of trichloroethene using different electron donors.” Environ. Sci. Pollut. Res. 22 (23): 19039–19047. https://doi.org/10.1007/s11356-015-5117-z.
Yu, S., M. E. Dolan, and L. Semprini. 2005. “Kinetics and inhibition of reductive dechlorination of chlorinated ethylenes by two different mixed cultures.” Environ. Sci. Technol. 39 (1): 195–205. https://doi.org/10.1021/es0496773.
Yu, S., and L. Semprini. 2004. “Kinetics and modeling of reductive dechlorination at high PCE and TCE concentrations.” Biotechnol. Bioeng. 88 (4): 451–464. https://doi.org/10.1002/bit.20260.
Zeebe, R. E. 2011. “On the molecular diffusion coefficients of dissolved CO2, HCO3-, and CO32-and their dependence on isotopic mass.” Geochim. Cosmochim. Acta. 75 (9): 2483–2498. https://doi.org/10.1016/j.gca.2011.02.010.
Ziv-El, M., S. C. Popat, K. Cai, R. U. Halden, R. Krajmalnik-Brown, and B. E. Rittmann. 2012. “Managing methanogens and homoacetogens to promote reductive dechlorination of trichloroethene with direct delivery of H2 in a membrane biofilm reactor.” Biotechnol. Bioeng. 109 (9): 2200–2210. https://doi.org/10.1002/bit.24487.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 146Issue 2February 2020

History

Received: Feb 5, 2019
Accepted: Jun 25, 2019
Published online: Dec 12, 2019
Published in print: Feb 1, 2020
Discussion open until: May 12, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate, Dept. of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State Univ., 2525 Pottsdamer St., Tallahassee, FL 32310. ORCID: https://orcid.org/0000-0002-3092-7259. Email: [email protected]
Rosa Krajmalnik-Brown [email protected]
Associate Professor, Biodesign Swette Center for Environmental Biotechnology, Arizona State Univ., 1001 South McAllister Ave., Tempe, AZ 85287. Email: [email protected]
Assistant Research Professor, Biodesign Swette Center for Environmental Biotechnology, Arizona State Univ., 1001 South McAllister Ave., Tempe, AZ 85287. Email: [email protected]
Ph.D. Student, Biodesign Swette Center for Environmental Biotechnology, Arizona State Univ., 1001 South McAllister Ave., Tempe, AZ 85287. Email: [email protected]
Bruce E. Rittmann, Dist.M.ASCE [email protected]
Professor, Biodesign Swette Center for Environmental Biotechnology, Arizona State Univ., 1001 South McAllister Ave., Tempe, AZ 85287. Email: [email protected]
Youneng Tang [email protected]
Assistant Professor, Dept. of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State Univ., 2525 Pottsdamer St., Tallahassee, FL 32310 (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share