Technical Papers
Aug 29, 2019

Evaluation of Autoclaved Aerated Concrete Fines for Removal of Cd(II) and Pb(II) from Wastewater

Publication: Journal of Environmental Engineering
Volume 145, Issue 11

Abstract

Along with the increase of autoclaved aerated concrete (AAC) production, the amount of scrap waste (industrial by-products) is increasing. AAC waste, however, is not yet being fully reused or recycled and is discarded without any treatment in most developing countries. In this study, AAC fines were tested as effective and economic adsorbents for the removal of Cd2+ and Pb2+ from wastewater. A series of batch adsorption experiments were carried out using AAC with three different particle sizes (<0.105, 0.105–2, and 2–4.75 mm) to examine effects of the particle size, initial metal concentration (Ci), initial pH (pHi), ionic strength, contact time, and competitive metals. For comparing the adsorption characteristics and capacities, crushed concrete fines and a fine sand were also used. Results showed that the adsorption kinetic data were well fitted to the pseudo–second-order kinetics model for all tested materials. Pb2+ adsorption was independent of pHi and ionic strength for AAC fines, whereas Cd2+ adsorption varied depending on pHi and decreased drastically at pHi7. Based on the results from adsorption isotherms, the Freundlich model fitted well (R2>0.90) to the data for 300Ci5,000  mg/L, whereas the Langmuir model was applicable (R2>0.99) to the data for Ci2,000  mg/L. The maximum adsorption capacity of each particle size of AAC exhibited almost the same adsorption capacity for Cd2+ (15  mg/g) and Pb2+ (>250  mg/g), which are similar to or higher than the values of other types of adsorbents in previous studies. The metal removal by AAC is controlled mainly by ion exchange, surface complexation, and surface precipitation. In particular, the Ca2+ ion exchange on the hydrated adsorbent surface is the dominant adsorption mechanism at the early stage of adsorption. The selectivity sequence of metal adsorptions became Pb2+>Cu2+>Ni2+>Cd2+>Zn2+ for AAC, and the existence of Pb2+ and Cu2+ in wastewater highly impeded the Cd2+ adsorption onto AAC fines.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This study was supported by the Science and Technology Research Partnership for Sustainable Development (SATREPS) of the Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA). We deeply appreciate Masuo Recycle Co., Ltd., and Asahi Kasei Construction Material Cooperation, Japan, for providing experimental materials and Mr. Akihiro Matsuno, Saitama University, for supporting laboratory experiments.

References

Agnieszka, G. K., P. Baran, M. Wdowin, and W. Franus. 2017. “Waste dolomite powder as an adsorbent of Cd, Pb(II), and Zn from aqueous solutions.” Environ. Earth Sci. 76 (15): 521. https://doi.org/10.1007/s12665-017-6854-8.
Akira, K., K. Fujiwara, T. Yamamoto, S. Nishikawa, and H. Moriyama. 2012. “Analysis of adsorption behavior of cations onto quartz surface by electrical double-layer model.” J. Nucl. Sci. Technol. 36 (12): 1167–1175. https://doi.org/10.1080/18811248.1999.9726312.
Alyüz, B., and S. Veli. 2009. “Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins.” J. Hazard. Mater. 167 (1–3): 482–488. https://doi.org/10.1016/j.jhazmat.2009.01.006.
Arslanoglu, H., H. S. Altundogan, and F. Tumen. 2009. “Heavy metals binding properties of esterified lemon.” J. Hazard. Mater. 164 (2–3): 1406–1413. https://doi.org/10.1016/j.jhazmat.2008.09.054.
Bailey, S. E., T. J. Olin, R. M. Bricka, and D. D. Adrian. 1999. “A review of potentially low-cost sorbents for heavy metals.” Wat. Res. 33 (11): 2469–2479. https://doi.org/10.1016/S0043-1354(98)00475-8.
Baker, H. M., and A. M. Massadeh. 2009. “Natural Jordanian zeolite: Removal of heavy metal ions from water samples using column and batch methods.” Environ. Monit. Assess. 157 (1–4): 319–330. https://doi.org/10.1007/s10661-008-0537-6.
Bertrand, P. S. J., J. Silvestre, and E. Pinell. 2011. “Lead-induced DNA damage in Vicia faba root cells: Potential involvement of oxidative stress.” Mutat. Res. Genet. Toxicol. Environ. Mutagen. 726 (2): 123–128. https://doi.org/10.1016/j.mrgentox.2011.09.001.
Bibi, S., A. Farooqi, K. Hussain, and N. Haider. 2015. “Evaluation of industrial based adsorbents for simultaneous removal of arsenic and fluoride from drinking water.” J. Cleaner Prod. 87 (Jan): 882–896. https://doi.org/10.1016/j.jclepro.2014.09.030.
Blöcher, C., J. Dorda, V. Mavrov, H. Chmiel, N. K. Lazaridis, and K. A. Matis. 2003. “Hybrid flotation membrane filtration process for the removal of heavy metal ions from wastewater.” Wat. Res. 37 (16): 4018–4026. https://doi.org/10.1016/S0043-1354(03)00314-2.
Bourliva, A., K. Michailidis, C. Sikalidis, A. Filippidis, and M. Betsiou. 2015. “Adsorption of Cd (II), Cu (II), Ni (II) and Pb (II) onto natural bentonite: Study in mono- and multimetal systems.” Environ. Earth Sci. 73 (9): 5445. https://doi.org/10.1007/s12665-014-3798-0.
Bozic, D., V. Stankovic, M. Gorgievski, G. Bogdanovic, and R. Kovacevic. 2009. “Adsorption of heavy metal ions by sawdust of deciduous trees.” J. Hazard. Mater. 171 (1–3): 684–692. https://doi.org/10.1016/j.jhazmat.2009.06.055.
Bulgariu, D., and L. Bulgariu. 2012. “Equilibrium and kinetics studies of heavy metal ions biosorption on green algae waste biomass.” Bioresour. Technol. 103 (1): 489–493. https://doi.org/10.1016/j.biortech.2011.10.016.
Chan, B. K. C., and A. W. L. Dudeney. 2008. “Reverse osmosis removal of arsenic residues from bioleaching of refractory gold concentrates.” Miner. Eng. 21 (4): 272–278. https://doi.org/10.1016/j.mineng.2007.10.003.
Chehregani, A., M. Noori, and H. L. Yazdi. 2009. “Phytoremediation of heavy-metal-polluted soils: Screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability.” Ecotoxicol. Environ. Saf. 72 (5): 1349–1353. https://doi.org/10.1016/j.ecoenv.2009.02.012.
Chen, X., W. H. Hou, G. L. Song, and Q. H. Wang. 2011. “Adsorption of Cu, Cd, Zn and Pb ions from aqueous solutions by electric arc furnace slag and the effects of pH and grain size.” Chem. Biochem. Eng. Q. 25 (1): 105–114.
Cheng, T. W., M. L. Lee, M. S. Ko, T. H. Ueng, and S. F. Yang. 2012. “The heavy metal adsorption characteristics on metakaolin-based geopolymer.” Appl. Clay Sci. 56 (Feb): 90–96. https://doi.org/10.1016/j.clay.2011.11.027.
Coelho, G. F., A. C. Concalves, J. C. Novoa-Munoz, A. Nunez-Delgado, and D. Fernández-Calviño. 2016. “Competitive and non-competitive cadmium, copper and lead sorption/desorption on wheat straw affecting sustainability in vineyards.” J. Cleaner Prod. 139 (Dec): 1496–1503. https://doi.org/10.1016/j.jclepro.2016.09.021.
Damrongsiri, S. 2017. “Feasibility of using demolition waste as an alternative heavy metal immobilizing agent.” J. Environ. Manage. 192 (May): 197–202. https://doi.org/10.1016/j.jenvman.2017.01.052.
Dong, L., Z. Zhu, Y. Qiu, and J. Zhao. 2010. “Simultaneous adsorption of lead and cadmium on MnO2-loaded resin.” J. Environ. Sci. 22 (2): 225–229. https://doi.org/10.1016/S1001-0742(09)60097-8.
Echeverría, J. C., M. T. Morera, C. Mazkiarán, and J. J. Garrido. 1998. “Competitive sorption of heavy metal by soils. Isotherms and fractional factorial experiments.” Environ. Pollut. 101 (2): 275–284. https://doi.org/10.1016/S0269-7491(98)00038-4.
Erdem, E., N. Karapinar, and R. Donat. 2004. “The removal of heavy metal cations by natural zeolites.” J. Colloid Interface Sci. 280 (2): 309–314. https://doi.org/10.1016/j.jcis.2004.08.028.
Farajzadeh, M. A., and A. B. Monji. 2004. “Adsorption characteristics of wheat bran towards heavy metal cations.” Sep. Purif. Technol. 38 (3): 197–207. https://doi.org/10.1016/j.seppur.2003.11.005.
Farinella, N. V., G. D. Matos, and M. A. Z. Arruda. 2007. “Grape bagasse as a potential biosorbent of metals in effluent treatments.” Bioresour. Technol. 98 (10): 1940–1946. https://doi.org/10.1016/j.biortech.2006.07.043.
Freundlich, H. M. F. 1906. “Over the adsorption in solution.” J. Phy. Chem. 57: 385–471.
Fu, F., and Q. Wang. 2011. “Removal of heavy metal ions from wastewaters: A review.” J. Environ. Manage. 92 (3): 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011.
Galindo, L. S. G., and A. F. A. Neto. 2013. “Removal of cadmium(II) and lead(II) ions from aqueous phase on sodic bentonite.” Mater. Res. 16 (2): 515–527. https://doi.org/10.1590/S1516-14392013005000007.
Ghodbane, I., L. Nouri, O. Hamdaoui, and M. Chiha. 2008. “Kinetic and equilibrium study for the sorption of cadmium(II) ions from aqueous phase by eucalyptus bark.” J. Hazard. Mater. 152 (1): 148–158. https://doi.org/10.1016/j.jhazmat.2007.06.079.
Grace, M. A., E. Clifford, and M. G. Healy. 2016. “The potential for the use of waste products from a variety of sectors in water treatment processes.” J. Cleaner Prod. 137 (Nov): 788–802. https://doi.org/10.1016/j.jclepro.2016.07.113.
Gui, C. Y., Z. K. Neng, Z. Y. Sheng, and D. F. Yue. 2006. “Removal of Pb2+ and Cd2+ by adsorption on clay-solidified grouting curtain for waste landfills.” J. Cent. South Univ. Tech. 13 (2): 166–170. https://doi.org/10.1007/s11771-006-0150-1.
Guo, Z., Y. Li, S. Zhang, H. Niu, Z. Chen, and J. Xu. 2011. “Enhanced sorption of radiocobalt from water by Bi(III) modified montmorillonite: A novel adsorbent.” J. Hazard. Mater. 192 (1): 168–175. https://doi.org/10.1016/j.jhazmat.2011.05.004.
Heechan, C., D. Oh, and K. Kim. 2005. “A study on removal characteristics of heavy metals from aqueous solution by fly ash.” J. Hazard. Mater. 127 (1–3): 187–195. https://doi.org/10.1016/j.jhazmat.2005.07.019.
Ho, Y. S. 2006. “Review of second-order models for adsorption systems.” J. Hazard. Mater. 136 (3): 681–689. https://doi.org/10.1016/j.jhazmat.2005.12.043.
Ho, Y. S., and G. McKay. 1998. “A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents.” Process Saf. Environ. Prot. 76 (4): 332–340. https://doi.org/10.1205/095758298529696.
Ho, Y. S., and G. McKay. 1999. “Pseudo-second order model for sorption processes.” Proc. Biochem 34 (5): 451–465. https://doi.org/10.1016/S0032-9592(98)00112-5.
Hui, S., H. Chao, and C. Kot. 2005. “Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash.” J. Hazard. Mater. 127 (1–3): 89–101. https://doi.org/10.1016/j.jhazmat.2005.06.027.
Huisman, J. L., G. Schouten, and C. Schultz. 2006. “Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry.” Hydrometal 83 (1–4): 106–113. https://doi.org/10.1016/j.hydromet.2006.03.017.
Hur, J., J. Shin, J. Yoo, and Y. S. Seo. 2015. “Competitive adsorption of metals onto magnetic graphene oxide: Comparison with other carbonaceous adsorbents.” Sci. World J. 2015: 1–11. https://doi.org/10.1155/2015/836287.
Inglezakis, V. J., M. D. Loizidou, and H. P. Grigoropoulou. 2003. “Ion exchange of Pb2+, Cu2+, Fe3+, and Cr3+ on naturlinoptilolite: Selectivity determination and influence of acidity on metal uptake.” J. Colloid Interface Sci. 261 (1): 49–54. https://doi.org/10.1016/S0021-9797(02)00244-8.
Inyang, M., B. Gao, Y. Yao, Y. Xue, A. Zimmerman, A. Mosa, P. Pullammanappallil, Y. S. Ok, and X. Cao. 2016. “A review of biochar as a low-cost adsorbent for aqueous heavy metal removal.” Crit. Rev. Environ. Sci. Technol. 46 (4): 406–433. https://doi.org/10.1080/10643389.2015.1096880.
Jong, H. P., S. C. Ju, S. O. Yong, H. K. Seong, S. H. Jong, D. D. Ronald, and C. S. Dong. 2016a. “Comparison of single and competitive metal adsorption by pepper stem biochar.” J. Arc. Agron. Soil Sci. 62 (5): 617–632. https://doi.org/10.1080/03650340.2015.1074186.
Jong, H. P., S. O. Yong, S. H. Kim, J. S. Cho, J. S. Heo, R. D. Delaune, and D. C. Seo. 2016b. “Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions.” Chemosphere 142 (Jan): 77–83. https://doi.org/10.1016/j.chemosphere.2015.05.093.
Karnib, M., A. Kabbanib, H. Holail, and Z. Olama. 2014. “Heavy metals removal using activated carbon, silica and silica activated carbon composite.” Energy Procedia 50: 113–120. https://doi.org/10.1016/j.egypro.2014.06.014.
Kobya, M., E. Demirbas, E. Senturk, and M. Ince. 2005. “Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone.” Bioresour. Technol. 96 (13): 1518–1521. https://doi.org/10.1016/j.biortech.2004.12.005.
Krishan, K. A., and T. S. Anirudhan. 2002. “Uptake of heavy metals in batch systems by sulfurized steam activated carbon prepared from sugarcane bagasse pith.” Ind. Eng. Chem. Res. 41 (20): 5085–5093. https://doi.org/10.1021/ie0110181.
Ku, Y., and I. L. Jung. 2001. “Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide.” Water Res. 35 (1): 135–142. https://doi.org/10.1016/S0043-1354(00)00098-1.
Kumara, G. M. P., T. Saito, S. Asamoto, and K. Kawamoto. 2018. “Reviews on the applicability of construction and demolition waste as low-cost adsorbents to remove heavy metals in wastewater.” Int. J. Geomate. 14 (42): 44–51. https://doi.org/10.21660/2018.42.7148.
Kunio, M., J. Kikuma, M. Tsunashima, T. Ishikawa, S. Matsuno, A. Ogawa, and M. Sato. 2011. “In situ time-resolved X-ray diffraction of tobermorite formation in autoclaved aerated concrete: Influence of silica source reactivity and Al addition.” Cem. Concr. Res. 41 (5): 510–519. https://doi.org/10.1016/j.cemconres.2011.01.022.
Lagergren, S. 1898. “About the theory of so-called adsorption of soluble substances.” Kungliga Svenska Vetenskapsakademiens. Handlin. 24 (4): 1–39.
Lam, N. T., S. Asamoto, and K. Matsui. 2018. “Sorption isotherm and length change behavior of autoclaved aerated concrete.” Cem. Concr. Compos. 94 (Apr): 136–144. https://doi.org/10.1016/j.cemconcomp.2018.09.003.
Langmuir, I. 1918. “The adsorption of gases on plane surfaces of glass, mica and platinum.” J. Am. Chem. Soc. 40 (9): 1361–1403. https://doi.org/10.1021/ja02242a004.
Li, Z. 2011. Advanced concrete technology. Hoboken, NJ: Wiley.
Li, Z., L. Wang, J. Meng, X. Liu, J. Xu, F. Wang, and P. Brookes. 2018. “Zeolite supported nanoscale zero-valent iron: New findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueous solution and soil.” J. Hazard. Mater. 69 (1): 1–11. https://doi.org/10.1016/j.jhazmat.2017.09.036.
Liu, L., T. Li, G. Yang, Y. Wang, A. Tang, and Y. Ling. 2017. “Synthesis of thiol-functionalized mesoporous calcium silicate and its adsorption characteristics for heavy metal ions.” J. Environ. Chem. Eng. 5: 6201–6215. https://doi.org/10.1016/j.jece.2017.11.046.
Liu, Z., Z. Li-min, W. Peng, Z. Kai, W. Chuan-xi, and L. Hui-hua. 2008. “Competitive adsorption of heavy metal ions on peat.” J. China Univ. Min. Technol. 18 (2): 255–260. https://doi.org/10.1016/S1006-1266(08)60054-1.
Lixuan, Z., Y. Chen, Q. Zhang, X. Guo, Y. Peng, H. Xiao, X. Chen, and J. Luo. 2015. “Adsorption of Cd(II), Cu(II) and Ni(II) ions by cross-linkingchitosan/rectorite nano-hybrid composite microspheres.” Carbohydr. Polym. 130 (Oct): 333–343. https://doi.org/10.1016/j.carbpol.2015.05.015.
Martemianov, D., B. B. Xie, T. Yurmazova, M. Khaskelberg, F. Wang, C. H. Wei, and S. Preis. 2017. “Cellular concrete-supported cost-effective adsorbents for aqueous arsenic and heavy metals abatement.” J. Environ. Chem. Eng. 5 (4): 3930–3941. https://doi.org/10.1016/j.jece.2017.07.063.
Minceva, M., R. Fajgar, L. Markovska, and V. Meshko. 2008. “Comparative study of Zn2+, Cd2+, and Pb2+ removal from water solution using natural clinoptilolitic zeolite and commercial granulated activated carbon. equilibrium of adsorption.” Sep. Sci. Technol. 43 (8): 2117–2143. https://doi.org/10.1080/01496390801941174.
Ming-qin, J., J. Xiao-ying, L. Xiao-Qiao, and C. Zu-liang. 2010. “Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay.” Desalination 25 (1–3): 233–239. https://doi.org/10.1016/j.desal.2009.11.005.
Minister of Construction. 2010. “Decision No. 567/QD-TTg on Program on development of non-baked building materials through 2020.” Accessed November 15, 2018. https://vanbanphapluat.co/decision-no-567-qd-ttg-approving-the-program-on-development-of-non-baked.
Mishra, P. C., and R. K. Patel. 2009. “Removal of lead and zinc ions from water by low cost adsorbents.” J. Hazard. Mater. 168 (1): 319–325. https://doi.org/10.1016/j.jhazmat.2009.02.026.
Murugesan, G. S., M. Sathishkumar, and K. Swaminathan. 2006. “Arsenic removal from groundwater by pretreated waste tea fungal biomass.” Bioresour. Technol. 97 (3): 483–487. https://doi.org/10.1016/j.biortech.2005.03.008.
Naiya, T. K., A. K. Bhattacharya, and S. K. Das. 2009a. “Clarified sludge (basic oxygen furnace sludge)—An adsorbent for removal of Pb(II) from aqueous solutions–kinetics, thermodynamics and desorption studies.” J. Hazard. Mater. 170 (1): 252–262. https://doi.org/10.1016/j.jhazmat.2009.04.103.
Narayanan, N., and K. Ramamurthy. 2000. “Structure and properties of aerated concrete: A review.” Cem. Concr. Compos. 22 (5): 321–329. https://doi.org/10.1016/S0958-9465(00)00016-0.
Nguyen, T. C., P. Loganathan, T. V. Nguyen, J. Kandasamy, R. Naidu, and S. Vigneswaran. 2018. “Adsorptive removal of five heavy metals from water using blast furnace slag and fly ash.” Environ. Sci. Pollut. Res. 25 (21): 20430–20438. https://doi.org/10.1007/s11356-017-9610-4.
Nguyen, T. C., P. Loganathan, T. V. Nguyen, S. Vigneswaran, J. Kandasamy, and R. Naidu. 2015. “Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies.” Chem. Eng. J. 270 (Jun): 393–404. https://doi.org/10.1016/j.cej.2015.02.047.
Nichola, J. C., E. L. William, and J. S. Ian. 2005. “Interactions of aqueous Cu2+, Zn2+ and Pb2+ ions with crushed concrete fines.” J. Hazard. Mater. 121 (1–3): 203–213. https://doi.org/10.1016/j.jhazmat.2005.02.009.
OECD (Organization for Economic Co-Operation and Development Publications). 2000. “Guidelines for the testing of chemicals.” Accessed November. 15, 2018. http://www.oecd.org/env/ehs/testing/oecdguidelines-forthetestingof-chemicals.htm.
Ok, Y. S., J. E. Yang, Y. S. Zhang, S. J. Kim, and D. Y. Chung. 2007. “Heavy metal adsorption by a formulated zeolite-portland cement mixture.” J. Hazard. Mater. 147 (1–2): 91–96. https://doi.org/10.1016/j.jhazmat.2006.12.046.
Ouhadi, V. R., R. N. Yong, N. Shariatmadari, S. Saeidijam, A. R. Goodarzi, and M. S. Zanjani. 2010. “Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method.” J. Hazard. Mater. 173 (1–3): 87–94. https://doi.org/10.1016/j.jhazmat.2009.08.052.
Paranavithana, G. N., K. Kawamoto, Y. Inoue, T. Saito, M. Vithanage, C. S. Kalpage, and G. B. B. Herath. 2015. “Adsorption of Cd2+Pb2+ onto coconut shell biochar and biochar-mixed soil.” Environ. Earth Sci. 75: 484–494. https://doi.org/10.1007/s12665-015-5167-z.
Pehlivan, E., B. H. Yanık, G. Ahmetli, and M. Pehlivan. 2008. “Equilibrium isotherm studies for the uptake of cadmium and lead ions onto sugar beet pulp.” Bioresour. Technol. 99 (9): 3520–3527. https://doi.org/10.1016/j.biortech.2007.07.052.
Ping Xin, S., Y. P. Ting, and J. P. Chen. 2007. “Biosorption of heavy metal ions (Pb, Cu, and Cd) from aqueous solutions by the marine alga Sargassum sp. in single- and multiple-metal systems.” Ind. Eng. Chem. Res. 46 (8): 2438–2444. https://doi.org/10.1021/ie0615786.
Prim, P., and F. H. Wittmann. 1983. Structure and water absorption of aerated concrete: Autoclaved aerated concrete, moisture and properties. Amsterdam, Netherlands: Elsevier.
Qi, G., X. Lei, L. Li, C. Yuan, Y. Sun, J. Chen, J. Chen, Y. Wang, and J. Hao. 2015. “Preparation and evaluation of a mesoporous calcium-silicate material (MCSM) from coal fly ash for removal of Co(II) from wastewater.” Chem. Eng. J. 279 (Nov): 777–787. https://doi.org/10.1016/j.cej.2015.05.077.
Qiu, Q., X. Jiang, G. Lv, Z. Chen, S. Lu, M. Ni, J. Yan, and X. Deng. 2018. “Adsorption of heavy metal ions using zeolite materials of municipal solid waste incineration fly ash modified by microwave-assisted hydrothermal treatment.” Powder Technol. 335 (Jul): 156–163. https://doi.org/10.1016/j.powtec.2018.05.003.
Schober, G. 2011. “Porosity in autoclaved aerated concrete (AAC): A review on pore structure, types of porosity, measurement methods and effects of porosity on properties.” In Proc., 5th Int. Conf. on Autoclaved Aerated Concrete, 351–359. Bydgoscsz, Poland: Univ. of Technology and Life Sciences.
Sewwandi, B. G. N., M. Vithanage, S. S. R. M. D. H. R. Wijesekara, M. I. M. Mowjood, S. Hamamoto, and K. Kawamoto. 2014. “Adsorption of Cd(II) and Pb(II) onto humic acid–Cocos nucifera) husk.” J. Hazard. Toxic Radioact. Waste 18 (2): 04014001. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000196.
Seyedeh, S. H. G., A. Landi, H. Khademi, and S. Hojati. 2014. “Removal of Cd2+Pb2+ ions from aqueous solutions using Iranian natural zeolite and sepiolite.” J. Environ. Stud. 40 (1): 43–45. https://doi.org/10.22059/JES.2014.50166.
Shabalala, A. N., O. E. Stephen, D. Souleymane, and S. Fitsum. 2017. “Pervious concrete reactive barrier for removal of heavy metals from acid mine drainage—Column study.” J. Hazard. Mater. 323 (Feb): 641–653. https://doi.org/10.1016/j.jhazmat.2016.10.027.
Shaban, E. G., and H. M. G. Abdallah. 2014. “Lead separation by sorption onto powdered marble waste.” Arabian. J. Chem. 7 (3): 277–286. https://doi.org/10.1016/j.arabjc.2010.10.031.
Shaban, E. G., M. G. Isam, and H. M. G. Abdallah. 2015. “Cadmium(II) sorption from water samples by powdered marble wastes.” Chem. Speciation Bioavailability 20 (4): 249–260. https://doi.org/10.3184/095422908X382152.
Shuran, H., Y. Li, L. Weng, J. Wang, J. He, Y. Liu, K. Zhang, Q. Wu, Y. Zhang, and Z. Zhang. 2018. “Competitive adsorption of Cd2+, Pb2+ and Ni2+ onto Fe3+-modified argillaceous limestone: Influence of pH, ionic strength and natural organic matters.” Sci. Total Environ. 637–638 (Oct): 69–78. https://doi.org/10.1016/j.scitotenv.2018.04.300.
Solpuker, U., J. Sheets, Y. Kim, and F. W. Schwartz. 2014. “Leaching potential of pervious concrete and immobilization of Cu, Pb and Zn using pervious concrete.” J. Contam. Hydrol. 161 (Jun): 35–48. https://doi.org/10.1016/j.jconhyd.2014.03.002.
Srivastava, P., B. Singh, and M. Angove. 2005. “Competitive adsorption behaviour of heavy metals on kaolinite.” J. Colloid Interface Sci. 290 (1): 28–38. https://doi.org/10.1016/j.jcis.2005.04.036.
Takeno, N. 2005. “Atlas of Eh-pH diagrams; intercomparison of thermodynamic database.” Accessed November 15, 2018. https://www.gsj.jp/researches/openfile/openfile2005/openfile0419.html.
Trivette, V., W. S. Chung, and E. M. Wayne. 2001. “Removal of selected metal ions from aqueous solution using modified corncobs.” Bioresour. Technol. 78 (2): 133–139. https://doi.org/10.1016/S0960-8524(01)00007-4.
Tsutsumi, T., S. Nishimoto, Y. Kameshima, and M. Miyake. 2014. “Hydrothermal preparation of tobermorite from blast furnace slag for Cs+ and Sr2+ sorption.” J. Hazard. Mater. 266 (Feb): 174–181. https://doi.org/10.1016/j.jhazmat.2013.12.024.
UNDP (United Nations Development Program Environmental Finance Services). 2013. “Promotion of non-fired brick production (NFB) production and utilization in Viet Nam.” Accessed November 15, 2018. http://www.vn.undp.org/content/vietnam/en/home/operations/projects/environment-climatechange/non-fired-bricks-project.html.
Visa, M., and A. M. Chelaru. 2014. “Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment.” App. Surf. Sci. 303 (Jun): 14–22. https://doi.org/10.1016/j.apsusc.2014.02.025.
Xin, M., S. T. Yang, H. Tang, Y. Liu, and H. Wang. 2015. “Competitive adsorption of heavy metal ions on carbon nanotubes and the desorption in simulated biofluids.” J. Colloid Interface Sci. 448 (Jun): 347–355. https://doi.org/10.1016/j.jcis.2015.02.042.
Xue, Y., H. Hou, and S. Zhu. 2009. “Competitive adsorption of copper(II), cadmium(II), lead(II) and zinc(II) onto basic oxygen furnace slag.” J. Hazard. Mater. 162 (1): 391–401. https://doi.org/10.1016/j.jhazmat.2008.05.072.
Yan, G. T., and T. Viraraghavan. 2003. “Heavy-metal removal from aqueous solution by fungus Mucor rouxii.” Water Res. 37 (18): 4486–4496. https://doi.org/10.1016/S0043-1354(03)00409-3.
Yang, D., Y. Liu, S. Liu, Z. Li, X. Tan, X. Huang, G. Zeng, Y. Zhou, B. Zheng, and X. Cai. 2016. “Competitive removal of Cd(II) and Pb(II) by biochars produced from water hyacinths: Performance and mechanism.” RSC Adv. 6 (7): 5223–5232. https://doi.org/10.1039/C5RA26248H.
Ye, X., S. Kang, H. Wang, H. Li, Y. Zhang, G. Wang, and H. Zhao. 2015. “Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils.” J. Hazard. Mater. 289 (May): 210–218. https://doi.org/10.1016/j.jhazmat.2015.02.052.
Youness, A., M. T. Olguín, M. Abatal, B. Ali, S. E. D. Mendez, and A. A. Santiago. 2019. “Comparison of the divalent heavy metals (Pb, Cu and Cd) adsorption behavior by montmorillonite-KSF and their calcium- and sodium-forms.” Superlatti. Microstr. 127 (Mar): 165–175. https://doi.org/10.1016/j.spmi.2017.11.061.
Yuanming, S., B. Li, E. H. Yang, Y. Liu, and T. Ding. 2015. “Feasibility study on utilization of municipal solid waste incineration bottom ash as aerating agent for the production of autoclaved aerated concrete.” Cem. Concr. Compos. 56 (Feb): 51–58. https://doi.org/10.1016/j.cemconcomp.2014.11.006.
Zhang, Y., L. Zeng, Y. Kang, J. Luo, W. Li, and Q. Zhang. 2017. “Sustainable use of autoclaved aerated concrete waste to remove low concentration of Cd (II) ions in wastewater.” Desalin. Water Treat. 82: 170–178. https://doi.org/10.5004/dwt.2017.20909.
Zou, J., C. Guo, X. Zhou, Y. Sun, and Z. Yang. 2018. “Sorption capacity and mechanism of Cr3+ on tobermorite derived from fly ash acid residue and carbide slag.” Colloids Surf. A 538 (Feb): 825–833. https://doi.org/10.1016/j.colsurfa.2017.11.073.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 145Issue 11November 2019

History

Received: Jan 22, 2019
Accepted: Mar 20, 2019
Published online: Aug 29, 2019
Published in print: Nov 1, 2019
Discussion open until: Jan 29, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, Graduate School of Science and Engineering, Saitama Univ., 255 Shimo-Okubo, Sakura-Ku, Saitama-Shi, Saitama 338-8570, Japan (corresponding author). ORCID: https://orcid.org/0000-0003-2898-1798. Email: [email protected]; [email protected]
Ken Kawamoto, Ph.D. [email protected]
Professor, Graduate School of Science and Engineering, Saitama Univ., 255 Shimo-Okubo, Sakura-Ku, Saitama-Shi, Saitama 338-8570, Japan. Email: [email protected]
Takeshi Saito, Ph.D. [email protected]
Assistant Professor, Graduate School of Science and Engineering, Saitama Univ., 255 Shimo-Okubo, Sakura-Ku, Saitama-Shi, Saitama 338-8570, Japan. Email: [email protected]
Shoichiro Hamamoto, Ph.D. [email protected]
Associate Professor, Graduate School of Agricultural and Life Sciences, Univ. of Tokyo, 1-1-1, Yayoi, Bunkyo-Ku, Tokyo 113-8657 Japan. Email: [email protected]
Shingo Asamoto, Ph.D. [email protected]
Associate Professor, Graduate School of Science and Engineering, Saitama Univ., 255 Shimo-Okubo, Sakura-Ku, Saitama-Shi, Saitama 338-8570, Japan. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share