Technical Papers
Jan 24, 2020

Artificial Neural Network Approach Modeling for Sorption of Cobalt from Aqueous Solution Using Modified Maghemite Nanoparticles

Publication: Journal of Environmental Engineering
Volume 146, Issue 4

Abstract

This research defines the utilization of the artificial neural network (ANN) for demonstrating the sorption percentage of cobalt from an aqueous solution using modified maghemite nanoparticles. The effect of operating conditions such as temperature (°C), initial cobalt concentration, initial pH, contact time (min), and sorbent mass (g) are focused on the best conditions for maximum cobalt ions removal. Prepared nanoparticles were described using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray fluorescence (XRF), and Fourier transform infrared spectroscopy (FTIR) measurements. The Langmuir model had been adequately matched with the experimental equilibrium data. Kinetic data demonstrate that the pseudo-second-order and intraparticle diffusion models regulate the kinetic processes of sorption. An ANN model was developed using 25 data sets for training, five data sets for validation, and 10 data sets for testing by a single-layer feedforward back-propagation network with 20 neurons to get a minimum mean square error (MSE). A tanh-sigmoid was used as the activation function for input and purelin for output layers. The high correlation coefficient (R2)=1 for trained data; R2=0.998 for tested data; MSE=3.78×1028 of the trained data; and MSE=6.0513×109 for tested data between the model, and the experimental data revealed that the model could forecast the release of cobalt from an aqueous solution using modified maghemite nanoparticles efficiently.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data used during the study appear in the published article.

Acknowledgments

This work was supported by Researchers Supporting Project number (RSP-2019/100), King Saud University, Riyadh, Saudi Arabia. The authors would also like to thank the Nuclear Research Center, the Egyptian Atomic Energy Authority for supporting this work.

References

Aghav, R. M., S. Kumar, and S. N. Mukherjee. 2011. “Artificial neural network modeling in competitive adsorption of phenol and resorcinol from water environment using some carbonaceous adsorbents.” J. Hazard. Mater. 188 (1–3): 67–77. https://doi.org/10.1016/j.jhazmat.2011.01.067.
Ahmadi, A., M. Khezri, A. A. Abdollahzadeh, and M. Askari. 2015. “Bioleaching of copper, nickel and cobalt from the low grade sulfidic tailing of Golgohar Iron Mine, Iran.” Hydrometallurgy 154 (Apr): 1–8. https://doi.org/10.1016/j.hydromet.2015.03.006.
Ali, I., O. M. L. Alharbi, Z. A. Alothman, A. Y. Badjah, A. Alwarthan, and A. A. Basheer. 2018. “Artificial neural network modelling of amido black dye sorption on iron composite nano material: Kinetics and thermodynamics studies.” J. Mol. Liq. 250 (Jan): 1–8. https://doi.org/10.1016/j.molliq.2017.11.163.
Argun, M. E., S. Dursun, C. Ozdemir, and M. Karatas. 2007. “Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics.” J. Hazard. Mater. 141 (1): 77–85. https://doi.org/10.1016/j.jhazmat.2006.06.095.
Asl, S. M. H., M. Ahmadi, M. Ghiasvand, A. Tardast, and R. Katal. 2013. “Artificial neural network (ANN) approach for modeling of Cr(VI) adsorption from aqueous solution by zeolite prepared from raw fly ash (ZFA).” J. Ind. Eng. Chem. 19 (3): 1044–1055. https://doi.org/10.1016/j.jiec.2012.12.001.
Attari, M., S. S. Bukhari, H. Kazemian, and S. Rohani. 2017. “A low-cost adsorbent from coal fly ash for mercury removal from industrial wastewater.” J. Environ. Chem. Eng. 5 (1): 391–399. https://doi.org/10.1016/j.jece.2016.12.014.
Çelekli, A., S. S. Birecikligil, F. Geyik, and H. Bozkurt. 2012. “Prediction of removal efficiency of Lanaset Red G on walnut husk using artificial neural network model.” Bioresour. Technol. 103 (1): 64–70. https://doi.org/10.1016/j.biortech.2011.09.106.
Chen, D., Z. Zeng, Y. Zeng, F. Zhang, and M. Wang. 2016. “Removal of methylene blue and mechanism on magnetic γ-Fe2O3/SiO2 nanocomposite from aqueous solution.” Water Resour. Ind. 15 (Sep): 1–13. https://doi.org/10.1016/j.wri.2016.05.003.
Chen, S., J. Zhang, C. Zhang, Q. Yue, Y. Li, and C. Li. 2010. “Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis.” Desalination 252 (1–3): 149–156. https://doi.org/10.1016/j.desal.2009.10.010.
Deligeer, W., Y. W. Gao, and S. Asuha. 2011. “Adsorption of methyl orange on mesoporous γ-Fe2O3/SiO2 nanocomposites.” Appl. Surf. Sci. 257 (8): 3524–3528. https://doi.org/10.1016/j.apsusc.2010.11.067.
Dell’Era, A., M. Pasquali, C. Lupi, and F. Zaza. 2014. “Purification of nickel or cobalt ion containing effluents by electrolysis on reticulated vitreous carbon cathode.” Hydrometallurgy 150 (Dec): 1–8. https://doi.org/10.1016/j.hydromet.2014.09.001.
Dong, Y., W. Dong, Y. Cao, Z. Han, and Z. Ding. 2011. “Preparation and catalytic activity of Fe alginate gel beads for oxidative degradation of azo dyes under visible light irradiation.” Catal. Today 175 (1): 346–355. https://doi.org/10.1016/j.cattod.2011.03.035.
Elemen, S., E. P. Akçakoca Kumbasar, and S. Yapar. 2012. “Modeling the adsorption of textile dye on organoclay using an artificial neural network.” Dyes Pigm. 95 (1): 102–111. https://doi.org/10.1016/j.dyepig.2012.03.001.
Gad, H., H. Omar, M. Aziz, M. Hassan, and M. Khalil. 2016. “Treatment of rice husk ash to improve adsorption capacity of cobalt from aqueous solution.” Asian J. Chem. 28 (2): 385. https://doi.org/10.14233/ajchem.2016.19364.
Gad, H., H. Omar, M. Khadil, and M. Hassan. 2013. “Factors affecting sorption of Pb(II) from aqueous solution using sawdust based activated carbon.” J. Am. Sci. 9 (10): 95–106. https://doi.org/10.7537/marsjas091013.12.
Ghaedi, M., A. M. Ghaedi, E. Negintaji, A. Ansari, and F. Mohammadi. 2014. “Artificial neural network—Imperialist competitive algorithm based optimization for removal of sunset yellow using Zn(OH)2 nanoparticles-activated carbon.” J. Ind. Eng. Chem. 20 (6): 4332–4343. https://doi.org/10.1016/j.jiec.2014.01.041.
Gupta, V. K., and A. Nayak. 2012. “Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles.” Chem. Eng. J. 180 (Jan): 81–90. https://doi.org/10.1016/j.cej.2011.11.006.
Harrache, Z., M. Abbas, T. Aksil, and M. Trari. 2019. “Thermodynamic and kinetics studies on adsorption of Indigo Carmine from aqueous solution by activated carbon.” Microchem. J. 144 (Jan): 180–189. https://doi.org/10.1016/j.microc.2018.09.004.
Ho, Y. S., and G. McKay. 1999. “Pseudo-second order model for sorption processes.” Process Biochem. 34 (5): 451–465. https://doi.org/10.1016/S0032-9592(98)00112-5.
Hossein Beyki, M., F. Shemirani, and M. Shirkhodaie. 2016. “Aqueous Co(II) adsorption using 8-hydroxyquinoline anchored γ-Fe2O3@chitosan with Co(II) as imprinted ions.” Int. J. Biol. Macromol. 87 (Jun): 375–384. https://doi.org/10.1016/j.ijbiomac.2016.02.077.
Hosseini Nia, R., M. Ghaedi, and A. M. Ghaedi. 2014. “Modeling of reactive orange 12 (RO 12) adsorption onto gold nanoparticle-activated carbon using artificial neural network optimization based on an imperialist competitive algorithm.” J. Mol. Liq. 195 (Jul): 219–229. https://doi.org/10.1016/j.molliq.2014.02.026.
Ianoş, R., C. Păcurariu, S. G. Muntean, E. Muntean, M. A. Nistor, and D. Nižňanský. 2018. “Combustion synthesis of iron oxide/carbon nanocomposites, efficient adsorbents for anionic and cationic dyes removal from wastewaters.” J. Alloys Compd. 741 (Apr): 1235–1246. https://doi.org/10.1016/j.jallcom.2018.01.240.
Iqbal, A., S. Sabar, M. K. Mun-Yee, M. N. N. Asshifa, A. R. M. Yahya, and F. Adam. 2018. “Pseudomonas aeruginosa USM-AR2/SiO2 biosorbent for the adsorption of methylene blue.” J. Environ. Chem. Eng. 6 (4): 4908–4916. https://doi.org/10.1016/j.jece.2018.07.025.
Karimi, H., and M. Ghaedi. 2014. “Application of artificial neural network and genetic algorithm to modeling and optimization of removal of methylene blue using activated carbon.” J. Ind. Eng. Chem. 20 (4): 2471–2476. https://doi.org/10.1016/j.jiec.2013.10.028.
Karimi, H., and F. Yousefi. 2012. “Application of artificial neural network-genetic algorithm (ANN-GA) to correlation of density in nanofluids.” Fluid Phase Equilib. 336 (Dec): 79–83. https://doi.org/10.1016/j.fluid.2012.08.019.
Karri, R. R., B. Heibati, Y. Yusup, M. Rafatullah, M. Mohammadyan, and J. N. Sahu. 2018. “Modeling airborne indoor and outdoor particulate matter using genetic programming.” Sustainable Cities Soc. 43 (Nov): 395–405. https://doi.org/10.1016/j.scs.2018.08.015.
Karri, R. R., and J. N. Sahu. 2018. “Modeling and optimization by particle swarm embedded neural network for adsorption of zinc (II) by palm kernel shell based activated carbon from aqueous environment.” J. Environ. Manage. 206 (Jan): 178–191. https://doi.org/10.1016/j.jenvman.2017.10.026.
Koduru, J. R., Y.-Y. Chang, J.-K. Yang, and I.-S. Kim. 2013. “Iron oxide impregnated Morus alba L. fruit peel for biosorption of Co(II): Biosorption properties and mechanism.” Sci. World J. 2013: 14. https://doi.org/10.1155/2013/917146.
Krause, B., and R. F. Sandenbergh. 2015. “Optimization of cobalt removal from an aqueous sulfate zinc leach solution for zinc electrowinning.” Hydrometallurgy 155 (May): 132–140. https://doi.org/10.1016/j.hydromet.2015.05.001.
Kumar, P. S., K. Ramakrishnan, S. D. Kirupha, and S. Sivanesan. 2010. “Thermodynamic and kinetic studies of cadmium adsorption from aqueous solution onto rice husk.” Braz. J. Chem. Eng. 27 (2): 347–355. https://doi.org/10.1590/S0104-66322010000200013.
Lacerda, E. C. M., M. dos Passos Galluzzi Baltazar, T. A. dos Reis, C. A. O. do Nascimento, B. Côrrea, and L. J. Gimenes. 2019. “Copper biosorption from an aqueous solution by the dead biomass of Penicillium ochrochloron.” Environ. Monit. Assess. 191 (4): 247. https://doi.org/10.1007/s10661-019-7399-y.
Lingamdinne, L. P., J. R. Koduru, Y.-Y. Chang, and R. R. Karri. 2018a. “Process optimization and adsorption modeling of Pb(II) on nickel ferrite-reduced graphene oxide nano-composite.” J. Mol. Liq. 250 (Jan): 202–211. https://doi.org/10.1016/j.molliq.2017.11.174.
Lingamdinne, L. P., J. R. Koduru, R. K. Jyothi, Y.-Y. Chang, and J.-K. Yang. 2016a. “Factors affect on bioremediation of Co(II) and Pb(II) onto Lonicera japonica flowers powder.” Desalination Water. Treat. 57 (28): 13066–13080. https://doi.org/10.1080/19443994.2015.1055813.
Lingamdinne, L. P., J. R. Koduru, H. Roh, Y.-L. Choi, Y.-Y. Chang, and J.-K. Yang. 2016b. “Adsorption removal of Co(II) from waste-water using graphene oxide.” Hydrometallurgy 165 (Oct): 90–96. https://doi.org/10.1016/j.hydromet.2015.10.021.
Lingamdinne, L. P., J. Singh, J.-S. Choi, Y.-Y. Chang, J.-K. Yang, R. R. Karri, and J. R. Koduru. 2018b. “Multivariate modeling via artificial neural network applied to enhance methylene blue sorption using graphene-like carbon material prepared from edible sugar.” J. Mol. Liq. 265 (Sep): 416–427. https://doi.org/10.1016/j.molliq.2018.06.022.
Liu, M., C. Chen, J. Hu, X. Wu, and X. Wang. 2011. “Synthesis of magnetite/graphene oxide composite and application for cobalt(II) removal.” J. Phys. Chem. C 115 (51): 25234–25240. https://doi.org/10.1021/jp208575m.
Manohar, D. M., B. F. Noeline, and T. S. Anirudhan. 2006. “Adsorption performance of Al-pillared bentonite clay for the removal of cobalt(II) from aqueous phase.” Appl. Clay. Sci. 31 (3): 194–206. https://doi.org/10.1016/j.clay.2005.08.008.
Masoumi, A., M. Ghaemy, and A. N. Bakht. 2014. “Removal of metal ions from water using poly(MMA-co-MA)/modified-Fe3O4 magnetic nanocomposite: Isotherm and kinetic study.” Ind. Eng. Chem. Res. 53 (19): 8188–8197. https://doi.org/10.1021/ie5000906.
Mirzaeinejad, M., Y. Mansoori, and B. Koohi-Zargar. 2018. “New acrylamide-based monomer containing metal chelating units: Homopolymer grafted magnetite nanoparticles via ATRP for the magnetic removal of Co(II) ions.” Polym. Adv. Technol. 29 (4): 1206–1218. https://doi.org/10.1002/pat.4231.
Mitra, T., B. Singha, N. Bar, and S. K. Das. 2014. “Removal of Pb(II) ions from aqueous solution using water hyacinth root by fixed-bed column and ANN modeling.” J. Hazard. Mater. 273 (May): 94–103. https://doi.org/10.1016/j.jhazmat.2014.03.025.
Mohan, S., and R. Gandhimathi. 2009. “Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent.” J. Hazard. Mater. 169 (1): 351–359. https://doi.org/10.1016/j.jhazmat.2009.03.104.
Nagpal, M., and R. Kakkar. 2019. “Use of metal oxides for the adsorptive removal of toxic organic pollutants.” Sep. Purif. Technol. 211 (Mar) 522–539. https://doi.org/10.1016/j.seppur.2018.10.016.
Ngomsik, A.-F., A. Bee, M. Draye, G. Cote, and V. Cabuil. 2005. “Magnetic nano- and microparticles for metal removal and environmental applications: A review.” C. R. Chim. 8 (6–7): 963–970. https://doi.org/10.1016/j.crci.2005.01.001.
Özdemir, U., B. Özbay, S. Veli, and S. Zor. 2011. “Modeling adsorption of sodium dodecyl benzene sulfonate (SDBS) onto polyaniline (PANI) by using multi linear regression and artificial neural networks.” Chem. Eng. J. 178 (Dec): 183–190. https://doi.org/10.1016/j.cej.2011.10.046.
Pirillo, S., M. L. Ferreira, and E. H. Rueda. 2007. “Adsorption of alizarin, eriochrome blue black R, and fluorescein using different iron oxides as adsorbents.” Ind. Eng. Chem. Res. 46 (24): 8255–8263. https://doi.org/10.1021/ie0702476.
Purwajanti, S., L. Zhou, Y. Ahmad Nor, J. Zhang, H. Zhang, X. Huang, and C. Yu. 2015. “Synthesis of magnesium oxide hierarchical microspheres: A dual-functional material for water remediation.” ACS Appl. Mater. Interfaces 7 (38): 21278–21286. https://doi.org/10.1021/acsami.5b05553.
Rezlescu, N., E. Rezlescu, P. D. Popa, E. Popovici, C. Doroftei, and M. Ignat. 2013. “Preparation and characterization of spinel-type MeFe2O4 (Me = Cu, Cd, Ni and Zn) for catalyst applications.” Mater. Chem. Phys. 137 (3): 922–927. https://doi.org/10.1016/j.matchemphys.2012.11.005.
Saeed, A., M. Sharif, and M. Iqbal. 2010. “Application potential of grapefruit peel as dye sorbent: Kinetics, equilibrium and mechanism of crystal violet adsorption.” J. Hazard. Mater. 179 (1–3): 564–572. https://doi.org/10.1016/j.jhazmat.2010.03.041.
Saha, P., S. Chowdhury, S. Gupta, and I. Kumar. 2010. “Insight into adsorption equilibrium, kinetics and thermodynamics of malachite green onto clayey soil of Indian origin.” Chem. Eng. J. 165 (3): 874–882. https://doi.org/10.1016/j.cej.2010.10.048.
Shaban, M., M. R. AbuKhadra, F. M. Nasief, and H. A. El-Salam. 2017. “Removal of ammonia from aqueous solutions, ground water, and wastewater using mechanically activated clinoptilolite and synthetic zeolite-A: Kinetic and equilibrium studies.” Water Air Soil Pollut. 228 (11): 450. https://doi.org/10.1007/s11270-017-3643-7.
Sheng, G., P. Yang, Y. Tang, Q. Hu, H. Li, X. Ren, B. Hu, X. Wang, and Y. Huang. 2016. “New insights into the primary roles of diatomite in the enhanced sequestration of UO22+ by zerovalent iron nanoparticles: An advanced approach utilizing XPS and EXAFS.” Appl. Catal. B 193 (Sep): 189–197. https://doi.org/10.1016/j.apcatb.2016.04.035.
Soleimani, R., N. A. Shoushtari, B. Mirza, and A. Salahi. 2013. “Experimental investigation, modeling and optimization of membrane separation using artificial neural network and multi-objective optimization using genetic algorithm.” Chem. Eng. Res. Des. 91 (5): 883–903. https://doi.org/10.1016/j.cherd.2012.08.004.
Sun, J., G. Yu, L. Liu, Z. Li, Q. Kan, Q. Huo, and J. Guan. 2014. “Core-shell structured Fe3O4@SiO2 supported cobalt(II) or copper(II) acetylacetonate complexes: Magnetically recoverable nanocatalysts for aerobic epoxidation of styrene.” Catal. Sci. Technol. 4 (5): 1246–1252. https://doi.org/10.1039/c4cy00017j.
Vijayaraghavan, K., J. Mao, and Y.-S. Yun. 2008. “Biosorption of methylene blue from aqueous solution using free and polysulfone-immobilized Corynebacterium glutamicum: Batch and column studies.” Bioresour. Technol. 99 (8): 2864–2871. https://doi.org/10.1016/j.biortech.2007.06.008.
Wang, J., S. Zheng, Y. Shao, J. Liu, Z. Xu, and D. Zhu. 2010. “Amino-functionalized Fe3O4@SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal.” J. Colloid Interface Sci. 349 (1): 293–299. https://doi.org/10.1016/j.jcis.2010.05.010.
White, R. L., C. M. White, H. Turgut, A. Massoud, and Z. R. Tian. 2018. “Comparative studies on copper adsorption by graphene oxide and functionalized graphene oxide nanoparticles.” J. Taiwan Inst. Chem. Eng. 85 (Apr): 18–28. https://doi.org/10.1016/j.jtice.2018.01.036.
Yakout, S. M., M. R. Hassan, and M. I. Aly. 2018. “Synthesis of magnetic alginate beads based on magnesium ferrite (MgFe2O4) nanoparticles for removal of Sr (II) from aqueous solution: Kinetic, equilibrium and thermodynamic studies.” Water Sci. Technol. 77 (11): 2714–2722. https://doi.org/10.2166/wst.2018.228.
Zhao, X., Y. Luo, C. He, P. Zong, K. Zhang, J. M. Kebwaro, K. Li, B. Fu, and Y. Zhao. 2015. “Evaluation of permutite for removal of radiocobalt from nuclear wastewater.” J. Radioanal. Nucl. Chem. 303 (1): 837–844. https://doi.org/10.1007/s10967-014-3327-3.
Zhu, H. Y., R. Jiang, Y. Q. Fu, J. H. Jiang, L. Xiao, and G. M. Zeng. 2011. “Preparation, characterization and dye adsorption properties of γ-Fe2O3/SiO2/chitosan composite.” Appl. Surf. Sci. 258 (4): 1337–1344. https://doi.org/10.1016/j.apsusc.2011.09.045.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 146Issue 4April 2020

History

Received: Sep 17, 2018
Accepted: Aug 13, 2019
Published online: Jan 24, 2020
Published in print: Apr 1, 2020
Discussion open until: Jun 24, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Lecturer, Nuclear Research Center, Atomic Energy Authority, Cairo 13759, Egypt (corresponding author). ORCID: https://orcid.org/0000-0001-9975-4774. Email: [email protected]
Refaat M. Fikry [email protected]
Lecturer, Nuclear Research Center, Atomic Energy Authority, Cairo 13759, Egypt. Email: [email protected]
Sobhy M. Yakout [email protected]
Assistant Professor, Dept. of Biochemistry, College of Science, King Saud Univ., P.O. Box 2455, Riyadh 11451, Saudi Arabia; Assistant Professor, Dept. of Analytical Chemistry and Control, Hot Laboratories and Waste Management Center, Atomic Energy Authority, Cairo 13759, Egypt. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share