Abstract

While titanium dioxide (TiO2) is highly regarded as one of the most promising catalysts for air-pollution mitigation, its practical use has been challenging due to structural complexity, process scalability, and high cost of existing fabrication methods. In this study, a facile spray-coating method is employed for fabrication of a TiO2-coated filter, with fibrous structure allowing for satisfactory airflow, sufficient pollutant–catalyst interactions, and reusability. Scanning electron microscopy (SEM) analysis shows that TiO2 nanoparticles were immobilized firmly on the surface of the membrane’s fibers. Energy dispersive X-ray (EDX) analysis reveals a homogeneous layer of TiO2 nanoparticles on the pleated washable synthetic (PWS) fibers. The photocatalytic oxidations of volatile organic compounds (VOCs) and carbon monoxide (CO) are analyzed in both the laboratory and field tests. TiO2-coated PWS filter membrane (60×60×5  cm) shows higher benzene and toluene removal efficiency (approximately 80%–86%) under UV radiation than that in the dark (less than 10%). This result indicates that photocatalytic oxidation on the surface of TiO2-coated PWS filter membrane contributes greatly to benzene and toluene degradation. The corresponding pilot-scale photocatalytic air filtration unit shows ethylene reduction rate of 1.59±0.52  ppmmin1 in a 45  m3 postharvest storage room. In a demonstrative elimination of automotive exhaust gases, the TiO2 coated PWS filter membrane shows a 16% decrease in CO generated from a motorcycle. This study shows the potential use of the cost-effective TiO2-coated filter membrane for indoor air quality improvement.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This study was partially supported by the National Research Council of Thailand. Furthermore, we are thankful to the automotive emission laboratory, Department of Pollution Control, Ministry of Natural Resources and Environment, and Department of Agriculture, Ministry of Agriculture and Cooperatives, Thailand, for their support on field trials.

References

Abeles, F. B., and L. E. Forrence. 1971. “Leather GR: Ethylene air pollution.” Plant Physiol. 48 (4): 504–505. https://doi.org/10.1104/pp.48.4.504.
Barbera, N., G. Bulla, and G. Romano. 1998. “A fatal case of benzene poisoning.” J. Forensic Sci. 43 (6): 1250–1251. https://doi.org/10.1520/JFS14396J.
Bazyari, A., A. A. Khodadadi, A. H. Mamaghani, J. Beheshtian, L. T. Thompson, and Y. Mortazavi. 2016. “Microporous titania-silica nanocomposite catalyst-adsorbent for ultra-deep oxidative desulfurization.” Appl. Catal. B: Environ. 180 (Jan): 65–77. https://doi.org/10.1016/j.apcatb.2015.06.011.
Bodzek, M. 2000. “Membrane techniques in air cleaning.” Polish J. Environ. Study 9 (1): 1–12.
Brasjen, B. J., A. W. van Cuijk, and A. A. Darhuber. 2011. “Dip-coating of chemically patterned surfaces.” Chem. Eng. Process. 50 (5–6): 565–568. https://doi.org/10.1016/j.cep.2010.09.021.
Cai, Z. H., S. H. Deng, H. L. Liao, C. N. Zeng, and G. Montavon. 2014. “The effect of spray distance and scanning step on the coating thickness uniformity in cold spray process.” J. Therm. Spray Technol. 23 (3): 354–362. https://doi.org/10.1007/s11666-013-0002-0.
Camara-Lemarroy, C. R., R. Rodríguez-Gutiérrez, R. Monreal-Robles, and J. G. González-González. 2015. “Acute toluene intoxication–clinical presentation, management and prognosis: A prospective observational study.” BMC Emergency Med. 15 (1): 19. https://doi.org/10.1186/s12873-015-0039-0.
Cao, X., X. Yang, H. Li, W. Huang, and X. Liu. 2017. “Investigation of Ce-TiO2 photocatalyst and its application in asphalt based specimens for NO degradation.” Constr. Build. Mater. 148 (Sep): 824–832. https://doi.org/10.1016/j.conbuildmat.2017.05.095.
Chamara, D., K. Illeperuma, and P. T. Galappatty. 2000. “Effect of modified atmosphere and ethylene absorbers on extension of storage life of Kolikuttu banana at ambient temperature.” Fruits 55 (6): 381–388.
de Chiara, M. L. V., S. Pal, A. Licciulli, M. L. Amodio, and G. Colelli. 2015. “Photocatalytic degradation of ethylene on mesoporous TiO2/SiO2 nanocomposites: Effects on the ripening of mature green tomatoes.” Biosyst. Eng. 132 (Apr): 61–70. https://doi.org/10.1016/j.biosystemseng.2015.02.008.
Del Curto, B., P. Tarsini, and A. Cigada. 2016. “Development of a photocatalytic filter to control indoor air quality.” J. Appl. Biomater. Funct. Mater. 14 (4): e496–e501. https://doi.org/10.5301/jabfm.5000336.
Dzenis, Y. 2004. “Spinning continuous fibers for nanotechnology.” Science 304 (5679): 1917–1919. https://doi.org/10.1126/science.1099074.
Gangupomu, R. H., M. L. Sattler, L. Melanie, and D. Ramirez. 2014. “Carbon nanotubes for air pollutant control via adsorption: A review.” Rev. Nanosci. Nanotechnol. 3 (2): 149–160. https://doi.org/10.1166/rnn.2014.1048.
Gilmore, D. L., R. C. Dykhuizen, R. A. Neiser, M. F. Smith, and T. J. Roemer. 1999. “Particle velocity and deposition efficiency in the cold spray process.” J. Therm. Spray Technol. 8 (4): 576–582. https://doi.org/10.1361/105996399770350278.
Heimann, R. B. 2007. Plasma-spray coating: Principles of thermal spraying, 17–25. Weinheim, Germany: Wiley.
Hwang, S., M. C. Lee, and W. Choi. 2003. “Highly enhanced photocatalytic oxidation of CO on titania deposited with Pt nanoparticles: Kinetics and mechanism.” Appl. Catal. B: Environ. 46 (1): 49–63. https://doi.org/10.1016/S0926-3373(03)00162-0.
IEA (International Energy Agency). 2016. World energy outlook special report 2016. Paris: Energy and Air Pollution, International Energy Agency.
Karakas, G., and P. Yetisemiyen. 2013. “Room temperature photocatalytic oxidation of carbon monoxide over Pd/TiO2–SiO2 catalysts.” Top. Catal. 56 (18–20): 1883–1891. https://doi.org/10.1007/s11244-013-0124-0.
Katsanaki, A. V., A. G. Kontos, T. Maggos, M. Pelaez, V. Likodimos, E. A. Pavlatou, D. D. Dionysiou, and P. Falaras. 2013. “Photocatalytic oxidation of nitrogen oxides on N-F-doped titania thin films.” Appl. Catal. B: Environ. 140–141 (Aug–Sep): 619–625. https://doi.org/10.1016/j.apcatb.2013.04.070.
Kennes, C., R. R. Rene, and M. C. Veiga. 2009. “Bioprocesses for air pollution control.” J. Chem. Technol. Biotechnol. 84 (10): 1419–1436. https://doi.org/10.1002/jctb.2216.
Klinkov, S. V., and V. F. Kosarev. 2006. “Measurements of cold spray deposition efficiency.” J. Therm. Spray. Technol. 15 (3): 364–371. https://doi.org/10.1361/105996306X124365.
Li, B. D., and Y. Xia. 2004. “Electrospinning of nanofibers: Reinventing the wheel?” Adv. Mater. 16 (14): 1151–1170. https://doi.org/10.1002/adma.200400719.
Licciulli, A., A. D. Riccardis, S. Pal, R. Nisi, G. Mele, and D. Cannoletta. 2017. “Ethylene photo-oxidation on copper phthalocyanine sensitized TiO2 films under solar radiation.” J. Photochem. Photobiol. A: Chem. 346 (Sep): 523–529. https://doi.org/10.1016/j.jphotochem.2017.06.046.
Liu, Z., F. Chen, P. Fang, S. Wang, Y. Gao, F. Zheng, Y. Liu, and Y. Dai. 2013. “Study of adsorption-assisted photocatalytic oxidation of benzene with TiO2/SiO2 nanocomposites.” Appl. Catal. A Gen. 451 (Jan): 120–126. https://doi.org/10.1016/j.apcata.2012.11.020.
Lyu, J., Z. Lizhong, and C. Burda. 2014. “Considerations to improve adsorption and photocatalysis of low concentration air pollutants on TiO2.” Catal. Today 225 (Apr): 24–33. https://doi.org/10.1016/j.cattod.2013.10.089.
Miao, J. J., M. Miyauchi, T. J. Simmons, J. S. Dordick, and R. J. Linhardt. 2010. “Electrospinning of nanomaterials and applications in electronic components and devices.” J. Nanosci. Nanotechnol. 10 (9): 5507–5519. https://doi.org/10.1166/jnn.2010.3073.
Mo, J. H., Y. P. Zhang, Q. J. Xu, J. J. Lamson, and R. Y. Zhao. 2009. “Photocatalytic purification of volatile organic compounds in indoor air: A literature review.” Atmos. Environ. 43 (14): 2229–2246. https://doi.org/10.1016/j.atmosenv.2009.01.034.
Obee, T. N., and R. T. Brown. 1995. “TiO2 photocatalysis for indoor air applications: Effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1, 3-butadiene.” Environ. Sci. Technol. 29 (5): 1223–1231. https://doi.org/10.1021/es00005a013.
Pham, T. D., and B. K. Lee. 2017. “Selective removal of polar VOCs by novel photocatalytic activity of metals co-doped TiO2/PU under visible light.” Chem. Eng. J. 307 (Jan): 63–73. https://doi.org/10.1016/j.cej.2016.08.068.
Puetz, J., and M. A. Aegerter. 2004. “Dip coating technique.” In Sol-gel technologies for glass producers and users, edited by M. A. Aegerter and M. Mennig, 37–48. Boston: Springer.
Reimerink, W. M. T. M., and D. V. D. Kleut. 1999. “Air pollution control by adsorption.” Stud. Surf. Sci. Catal. 120: 807–819. https://doi.org/10.1016/S0167-2991(99)80380-2.
Sahu, N., B. Parija, and S. Panigrahi. 2009. “Fundamental understanding and modeling of spin coating process: A review.” Indian J. Phys. 83 (4): 493–502. https://doi.org/10.1007/s12648-009-0009-z.
Schneider, J., M. Matsuoka, M. Takeuchi, J. L. Zhang, Y. Horiuchi, M. Anpo, and D. W. Bahnemann. 2014. “Understanding TiO2 photocatalysis: Mechanisms and materials.” Chem. Rev. 114 (19): 9919–9986. https://doi.org/10.1021/cr5001892.
Spaid, M. A., and G. M. Homsy. 1994. “Viscoelastic free surface flows: Spin coating and dynamic contact lines.” J. Non-Newtonian Fluid Mech. 55 (3): 249–281. https://doi.org/10.1016/0377-0257(94)80073-1.
Tasbihi, M., I. Calin, A. Šuligoj, M. Fanetti, and U. L. Štangar. 2017. “Photocatalytic degradation of gaseous toluene by using TiO2 nanoparticles immobilized on fiberglass cloth.” J. Photochem. Photobiol. A: Chem. 336 (Mar): 89–97. https://doi.org/10.1016/j.jphotochem.2016.12.025.
Tongon, W., C. Chawengkijwanich, and S. Chiarakorn. 2014. “Multifunctional Ag/TiO2/MCM-41 nanocomposite film applied for indoor air treatment.” Build. Environ. 82 (Dec): 481–489. https://doi.org/10.1016/j.buildenv.2014.09.014.
Tunsaringkarn, T., J. Suwansaksri, S. Soogarun, W. Siriwong, A. Rungsiyothin, K. Zapuang, and M. Robson. 2011. “Genotoxic monitoring and benzene exposure assessment of gasoline station workers in metropolitan Bangkok: Sister chromatid exchange (SCE) and urinary trans, trans-muconic acid (t, t-MA).” Asian Pac. J Cancer Prev. 12 (1): 223–227.
Wei, Q., D. Yang, F. Maohong, and H. G. Harris. 2013. “Applications of nanomaterial-based membranes in pollution control.” Crit. Rev. Environ. Sci. Technol. 43 (22): 2389–2438. https://doi.org/10.1080/10643389.2012.672066.
Zhao, L., K. Bobzin, F. Ernst, J. Zwick, and E. Lugscheider. 2006. “Study on the influence of plasma spray processes and spray parameters on the structure and crystallinity of hydroxylapatite coatings.” Mater. Wiss Werkst Tech. 37 (6): 516–520. https://doi.org/10.1002/mawe.200600029.
Zhou, B., and J. Shen. 2007. “Comparison of general ventilation air filter test standards between America and Europe.” In Vol. 2 of Proc., IAQVEC 2007—6th Int. Conf. on Indoor Air Quality, Ventilation and Energy Conservation in Buildings, 639–646. Atlanta: ASHRAE.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 145Issue 6June 2019

History

Received: Mar 10, 2018
Accepted: Oct 24, 2018
Published online: Apr 8, 2019
Published in print: Jun 1, 2019
Discussion open until: Sep 8, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Chamorn Chawengkijwanich, Ph.D. [email protected]
Senior Researcher, Hybrid Nanostructure and Nanocomposite Laboratory, National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathumthani 12120, Thailand. Email: [email protected]
Chonlada Pokhum [email protected]
Research Assistant, Hybrid Nanostructure and Nanocomposite Laboratory, National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathumthani 12120, Thailand. Email: [email protected]
Chutima Srisitthiratkul [email protected]
Research Assistant, Hybrid Nanostructure and Nanocomposite Laboratory, National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathumthani 12120, Thailand. Email: [email protected]
Nakarin Subjalearndee [email protected]
Research Assistant, Nanofunctional Textile Laboratory, National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathumthani 12120, Thailand. Email: [email protected]
Voraluck Pongsorrarith [email protected]
Research Assistant, Nanofunctional Textile Laboratory, National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathumthani 12120, Thailand. Email: [email protected]
Wittaya Yaipimai [email protected]
Research Assistant, Nanofunctional Textile Laboratory, National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathumthani 12120, Thailand. Email: [email protected]
Nipon Phanomkate [email protected]
Research Assistant, Nanofunctional Textile Laboratory, National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathumthani 12120, Thailand. Email: [email protected]
Varol Intasanta, Ph.D. [email protected]
Research Unit Director, Nanofunctional Textile Laboratory, National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathumthani 12120, Thailand (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share