Technical Papers
Oct 31, 2018

Sequential Precipitation of Iron, Copper, and Zinc from Wastewater for Metal Recovery

Publication: Journal of Environmental Engineering
Volume 145, Issue 1

Abstract

Hydroxide precipitation is the most widely used heavy metal wastewater treatment method. However, the metal hydroxide sludge produced must be treated concurrently. In this paper, an integrated treatment procedure, which modifies hydroxide precipitation with oxidation treatment and sulfide precipitation, is proposed to sequentially precipitate Fe, Cu, and Zn from wastewater for metal recovery. An industrial wastewater specimen containing Cu (290±6.25  mg/L), Fe (2,092±12.3  mg/L), and Zn (4,648±15.4  mg/L) was used. First, hydroxide precipitation using lime was applied to study the precipitation characteristics of Cu, Fe, and Zn, following which H2O2 oxidation treatment and NaHS sulfide precipitation were conducted and integrated with hydroxide precipitation to selectively precipitate Cu, Fe, and Zn from the wastewater specimen. The Fe, Cu, and Zn were sequentially removed from the wastewater by introducing 0.1% (v/v) H2O2, altering the pH of the wastewater to pH 3.5–4.0 using lime, adding 1  g/L NaHS, and subsequently altering the pH to 9.0. The Fe, Cu, and Zn were subsequently separated as individual precipitates with recoveries of 99.8±0.1, 94.0±0.3, and 96.1±0.7%, respectively, which can facilitate metal recovery and render sludge disposal unnecessary.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

Financial support for this study was provided in part by the Ministry of Science and Technology of the Republic of China under Grant MOST 106-2221-E-027-014.

References

Abdel-Ghani, N. T., G. A. El-Chaghaby, and F. S. Helal. 2013. “Simultaneous removal of aluminum, iron, copper, zinc, and lead from aqueous solution using raw and chemically treated African beech wood sawdust.” Desalin. Water Treat. 51 (16–18): 3558–3575. https://doi.org/10.1080/19443994.2012.750806.
Abdel-Salam, O. E., N. A. Reiad, and M. M. ElShafei. 2011. “A study of the removal characteristics of heavy metals from wastewater by low-cost adsorbents.” J. Adv. Res. 2 (4): 297–303. https://doi.org/10.1016/j.jare.2011.01.008.
Adams, M., R. Lawrence, and M. Bratty. 2008. “Biogenic sulphide for cyanide recycle and copper recovery in gold-copper ore processing.” Mineral Eng. 21 (6): 509–517. https://doi.org/10.1016/j.mineng.2008.02.001.
Aziz, H. A., M. N. Adlan, and K. S. Ariffin. 2008. “Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: Post treatment by high quality limestone.” Bioresour. Technol. 99 (6): 1578–1583. https://doi.org/10.1016/j.biortech.2007.04.007.
Babilas, D., and P. Dydo. 2018. “Selective zinc recovery from electroplating wastewaters by electrodialysis enhanced with complex formation.” Sep. Purif. Technol. 192: 419–428. https://doi.org/10.1016/j.seppur.2017.10.013.
Barakat, M. A. 2011. “New trends in removing heavy metals from industrial wastewater.” Arabian J. Chem. 4 (4): 361–377. https://doi.org/10.1016/j.arabjc.2010.07.019.
Bhagat, M., J. E. Burgess, A. P. M. Antunes, C. G. Whiteley, and J. R. Duncan. 2004. “Precipitation of mixed metal residues from wastewater utilising biogenic sulphide.” Mineral Eng. 17 (7–8): 925–932. https://doi.org/10.1016/j.mineng.2004.02.006.
Bhainsa, K. C., and S. F. D’souza. 2008. “Removal of copper ions by the filamentous fungus, Rhizopus oryzae from aqueous solution.” Bioresour. Technol. 99 (9): 3829–3835. https://doi.org/10.1016/j.biortech.2007.07.032.
Bilal, M., J. A. Shah, T. Ashfaq, S. M. H. Gardazi, A. A. Tahir, A. Pervez, H. Haroon, and Q. Mahmood. 2013. “Waste biomass adsorbents for copper removal from industrial wastewater: A review.” J. Hazard. Mater. 263 (2): 322–333. https://doi.org/10.1016/j.jhazmat.2013.07.071.
Bisht, R., M. Agarwal, and K. Singh. 2017. “Heavy metal removal from wastewater using various adsorbents: A review.” J. Water Reuse Desalin. 7 (4): 387–419. https://doi.org/10.2166/wrd.2016.104.
Burakov, A. E., E. V. Galunin, I. V. Burakova, A. E. Kucherova, S. Agarwal, A. G. Tkachev, and V. K. Gupta. 2018. “Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review.” Ecotoxicol. Environ. Saf. 148: 702–712. https://doi.org/10.1016/j.ecoenv.2017.11.034.
Cao, J., G. Zhang, Z. Mao, Z. Fang, and C. Yang. 2009. “Precipitation of valuable metals from bioleaching solution by biogenic sulfides.” Mineral Eng. 22 (3): 289–295. https://doi.org/10.1016/j.mineng.2008.08.006.
Chen, C. Y., M. S. Lin, and K. R. Hsu. 2008. “Recovery of Cu(II) and Cd(II) by a chelating resin containing aspartate groups.” J. Hazard. Mater. 152 (3): 986–993. https://doi.org/10.1016/j.jhazmat.2007.07.074.
Cochrane, E. L., S. Lu, S. W. Gibb, and I. Villaescusa. 2006. “A comparison of low-cost biosorbents and commercial sorbents for the removal of copper from aqueous media.” J. Hazard. Mater. 137 (1): 198–206. https://doi.org/10.1016/j.jhazmat.2006.01.054.
Deng, S., and Y. P. Ting. 2005. “Fungal biomass with grafted poly(acrylic acid) for enhancement of Cu(II) and Cd(II) biosorption.” Langmuir 21 (13): 5940–5948. https://doi.org/10.1021/la047349a.
Dursun, A. Y., G. Uslu, Y. Cuci, and Z. Aksu. 2003. “Bioaccumulation of copper(II), lead(II) and chromium(VI) by growing Aspergillus niger.” Process Biochem. 38 (12): 1647–1651. https://doi.org/10.1016/S0032-9592(02)00075-4.
Dutta, A., L. Zhou, A. O. Castillo-Araiza, and E. De Herdt. 2016. “Cadmium(II), lead(II), and copper(II) biosorption on Baker’s Yeast (Saccharomyces cerevesiae).” J. Environ. Eng. 142 (9): C6015002. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001041.
Ertugay, N., and Y. K. Bayhan. 2010. “The removal of copper(II) ion by using mushroom biomass (Agaricus bisporus) and kinetic modelling.” Desalination 255 (1–3): 137–142. https://doi.org/10.1016/j.desal.2010.01.002.
Fang, L., L. Li, Z. Qu, H. Xu, J. Xu, and N. Yan. 2018. “A novel method for the sequential removal and separation of multiple heavy metals from wastewater.” J. Hazard. Mater. 342: 617–624. https://doi.org/10.1016/j.jhazmat.2017.08.072.
Fu, F., and Q. Wang. 2011. “Removal of heavy metal ions from wastewaters: A review.” J. Environ. Manage. 92 (3): 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011.
Goh, P. S., and A. F. Ismail. 2018. “A review on inorganic membranes for desalination and wastewater treatment.” Desalination 434: 60–80. https://doi.org/10.1016/j.desal.2017.07.023.
Hassan, S. H. A., S. J. Kim, A. Y. Jung, J. H. Joo, S. Eun-Oh, and J. E. Yang. 2009. “Biosorptive capacity of Cd(II) and Cu(II) by lyophilized cells of Pseudomonas stutzeri.” J. Gen. Appl. Microbiol. 55 (1): 27–34. https://doi.org/10.2323/jgam.55.27.
Hosseini, S. S., E. Bringas, N. R. Tan, I. Ortiz, M. Ghahramani, and M. A. A. Shahmirzadi. 2016. “Recent progress in development of high performance polymeric membranes and materials for metal plating wastewater treatment: A review.” J. Water Process Eng. 9: 78–110. https://doi.org/10.1016/j.jwpe.2015.11.005.
Houari, B., S. Louhibi, K. Tizaoui, L. Boukli-hacene, B. Benguella, T. Roisnel, and V. Dorcet. 2016. “New synthetic material removing heavy metals from aqueous solutions and wastewater.” Arabian J. Chem. in press. https://doi.org/10.1016/j.arabjc.2016.11.010.
Jacob, J. M., C. Karthik, R. G. Saratale, S. S. Kumar, D. Prabakar, K. Kadirvelu, and A. Pugazhendhi. 2018. “Biological approaches to tackle heavy metal pollution: A survey of literature.” J. Environ. Manage. 217: 56–70. https://doi.org/10.1016/j.jenvman.2018.03.077.
Janyasuthiwong, S., E. R. Rene, G. Esposito, and P. N. L. Lens. 2015. “Effect of pH on Cu, Ni and Zn removal by biogenic sulfide precipitation in an inversed fluidized bed bioreactor.” Hydrometallurgy 158: 94–100. https://doi.org/10.1016/j.hydromet.2015.10.009.
Jianlong, W. 2002. “Biosorption of copper(II) by chemically modified biomass of Saccharomyces cerevisiae.” Process Biochem. 37 (8): 847–850. https://doi.org/10.1016/S0032-9592(01)00284-9.
Jiménez-Rodríguez, A. M., M. M. Durán-Barrantes, R. Borja, E. Sánchez, M. F. Colmenarejo, and F. Raposo. 2009. “Heavy metals removal from acid mine drainage water using biogenic hydrogen sulphide and effluent from anaerobic treatment: Effect of pH.” J. Hazard. Mater. 165 (1–3): 759–765. https://doi.org/10.1016/j.jhazmat.2008.10.053.
Jong, T., and D. L. Parry. 2003. “Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs.” Water Res. 37 (14): 3379–3389. https://doi.org/10.1016/S0043-1354(03)00165-9.
Kaur, G., S. J. Couperthwaite, B. W. Hatton-Jones, and G. J. Millar. 2018. “Alternative neutralisation materials for acid mine drainage treatment.” J. Water Process Eng. 22: 46–58. https://doi.org/10.1016/j.jwpe.2018.01.004.
Kim, S. W., S. K. Behera, Y. Jamal, and H. S. Park. 2016. “Optimization of sodium hydrosulfide synthesis for metal recovery from wastewater using flue gas containing H2S.” J. Environ. Eng. 142 (9): C4015009. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000984.
Kiran, M. G., K. Pakshirajan, and G. Das. 2016. “Heavy metal removal using sulfate-reducing biomass obtained from a lab-scale upflow anaerobic-packed bed reactor.” J. Environ. Eng. 142 (9): C4015010. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001005.
Ko, D., J. S. Lee, H. A. Patel, M. H. Jakobsen, Y. Hwang, C. T. Yavuz, H. C. B. Hansen, and H. R. Andersen. 2017. “Selective removal of heavy metal ions by disulfide linked polymer networks.” J. Hazard. Mater. 332: 140–148. https://doi.org/10.1016/j.jhazmat.2017.03.007.
Kul, M. K., and O. Oskay. 2015. “Separation and recovery of valuable metals from real mix electroplating wastewater by solvent extraction.” Hydrometallurgy 155: 153–160. https://doi.org/10.1016/j.hydromet.2015.04.021.
Lewis, A. E. 2010. “Review of metal sulphide precipitation.” Hydrometallurgy 104 (2): 222–234. https://doi.org/10.1016/j.hydromet.2010.06.010.
Li, X. M., D. X. Liao, X. Q. Xu, Q. Yang, G. M. Zeng, W. Zheng, and L. Guo. 2008. “Kinetic studies for the biosorption of lead and copper ions by Penicillium simplicissimum immobilized within loofa sponge.” J. Hazard. Mater. 159 (2–3): 610–615. https://doi.org/10.1016/j.jhazmat.2008.02.068.
Lide, D. R. 2004. CRC handbook of chemistry and physics. 85th ed. Boca Raton, FL: CRC Press.
Martín, D. M., M. Faccini, M. A. García, and D. Amantia. 2018. “Highly efficient removal of heavy metal ions from polluted water using ion selective polyacrylonitrile nanofibers.” J. Environ. Chem. Eng. 6 (1): 236–245. https://doi.org/10.1016/j.jece.2017.11.073.
Martins, L. R., F. H. Lyra, M. M. H. Rugani, and J. A. Takahashi. 2016. “Bioremediation of metallic ions by eight Penicillium species.” J. Environ. Eng. 142 (9): C4015007. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000998.
Mauchauffe’e, S., and E. Meux. 2007. “Use of sodium decanoate for selective precipitation of metals contained in industrial wastewater.” Chemosphere 69 (5): 763–768. https://doi.org/10.1016/j.chemosphere.2007.05.006.
Mirbagherp, S. A., and S. N. Hosseini. 2005. “Pilot plant investigation on petrochemical wastewater treatment for the removal of copper and chromium with the objective of reuse.” Desalination 171 (1): 85–93. https://doi.org/10.1016/j.desal.2004.03.022.
Nuhoglu, Y., E. Malkoc, A. Gürses, and N. Canpolat. 2002. “The removal of Cu(II) from aqueous solutions by Ulothrix zonata.” Bioresour. Technol. 85 (3): 331–333. https://doi.org/10.1016/S0960-8524(02)00098-6.
Öztürk, A., T. Artan, and A. Ayar. 2004. “Biosorption of nickel(II) and copper(II) ions from aqueous solution by Streptomyces coelicolor A3(2).” Colloids Surf. B 34 (2): 105–111. https://doi.org/10.1016/j.colsurfb.2003.11.008.
Pardo, R., M. Herguedas, E. Barrado, and M. Vega. 2003. “Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas Putida.” Anal. Bioanal. Chem. 376 (1): 26–32. https://doi.org/10.1007/s00216-003-1843-z.
Pugazhendhi, A., G. M. Boovaragamoorthy, K. Ranganathan, M. Naushad, and T. Kaliannan. 2018a. “New insight into effective biosorption of lead from aqueous solution using Ralstonia solanacearum: Characterization and mechanism studies.” J. Cleaner Prod. 174 (10): 1234–1239. https://doi.org/10.1016/j.jclepro.2017.11.061.
Pugazhendhi, A., K. Ranganathan, and T. Kaliannan. 2018b. “Biosorptive removal of copper(II) by Bacillus cereus isolated from contaminated soil of electroplating industry in India.” Water Air Soil Pollut. 229 (3): 76. https://doi.org/10.1007/s11270-018-3734-0.
Romero-Gonzalez, J., J. R. Peralta-Videa, E. Rodriguez, M. Delgado, and J. L. Gardea-Torresdey. 2006. “Potential of Agave lechuguilla biomass for Cr(III) removal from aqueous solutions: Thermodynamic studies.” Bioresour. Technol. 97 (1): 178–182. https://doi.org/10.1016/j.biortech.2005.01.037.
Sahinkaya, E., M. Gungor, A. Bayrakdar, Z. Yucesoy, and S. Uyanik. 2009. “Separate recovery of copper and zinc from acid mine drainage using biogenic sulfide.” J. Hazard. Mater. 171 (1–3): 901–906. https://doi.org/10.1016/j.jhazmat.2009.06.089.
Sampaio, R. M. M., R. A. Timmers, Y. Xu, K. J. Keesman, and P. N. L. Lens. 2009. “Selective precipitation of Cu from Zn in a pS controlled continuously stirred tank reactor.” J. Hazard. Mater. 165 (1–3): 256–265. https://doi.org/10.1016/j.jhazmat.2008.09.117.
Sandstorm, A., and E. Mattsson. 2001. “Bacterial ferrous iron oxidation of acid mine drainage as pre-treatment for subsequent metal recovery.” Int. J. Mineral Process. 62 (1–4): 309–320. https://doi.org/10.1016/S0301-7516(00)00062-4.
Seo, E. Y., Y. W. Cheong, G. J. Yim, K. W. Min, and J. N. Geroni. 2017. “Recovery of Fe, Al and Mn in acid coal mine drainage by sequential selective precipitation with control of pH.” Catena 148 (1): 11–16. https://doi.org/10.1016/j.catena.2016.07.022.
Shakya, M., P. Sharma, S. S. Meryem, Q. Mahmood, and A. Kumar. 2016. “Heavy metal removal from industrial wastewater using fungi: Uptake mechanism and biochemical aspects.” J. Environ. Eng. 142 (9): C6015001. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000983.
Singh, A., D. Kumar, and J. P. Gaur. 2008. “Removal of Cu(II) and Pb(II) by Pithophora oedogonia: Sorption, desorption and repeated use of the biomass.” J. Hazard. Mater. 152 (3): 1011–1019. https://doi.org/10.1016/j.jhazmat.2007.07.076.
Snoeyink, V. L., and D. Jenkins. 1980. Water chemistry, 258–449. New York: Wiley.
Song, J., X. Niu, X. M. Li, and T. He. 2018. “Selective separation of copper and nickel by membrane extraction using hydrophilic nanoporous ion-exchange barrier membranes.” Process Saf. Environ. Prot. 113: 1–9. https://doi.org/10.1016/j.psep.2017.09.008.
Tran, T. K., K. F. Chiu, C. Y. Lin, and H. J. Leu. 2017. “Electrochemical treatment of wastewater: Selectivity of the heavy metals removal process.” Int. J. Hydrogen Energy 42 (45): 27741–27748. https://doi.org/10.1016/j.ijhydene.2017.05.156.
Tunali, S., A. Cabuk, and T. Akar. 2006. “Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil.” Chem. Eng. J. 115 (3): 203–211. https://doi.org/10.1016/j.cej.2005.09.023.
Uhlman, W., H. Buttcher, O. Tosche, and C. E. W. Steinberg. 2004. “Buffering of acidicmine lakes: The relevance of surface exchange and solid bound sulphate.” Mine Water Environ. 23 (1): 20–27. https://doi.org/10.1007/s10230-004-0032-4.
Veeken, A. H. M., and W. H. Rulkens. 2003. “Innovative developments in the selective removal and reuse of heavy metals from wastewaters.” Water Sci. Technol. 47 (10): 9–16. https://doi.org/10.2166/wst.2003.0525.
Wang, F., X. Lu, and X. Y. Li. 2016. “Selective removals of heavy metals (Pb2+, Cu2+, and Cd2+) from wastewater by gelation with alginate for effective metal recovery.” J. Hazard. Mater. 308: 75–83. https://doi.org/10.1016/j.jhazmat.2016.01.021.
Wang, H., and Z. J. Ren. 2014. “Bioelectrochemical metal recovery from wastewater: A review.” Water Res. 66 (1): 219–232. https://doi.org/10.1016/j.watres.2014.08.013.
Wei, X., R. Viadero, and K. M. Buzby. 2005. “Recovery of iron and aluminum from acid mine drainage by selective precipitation.” Environ. Eng. Sci. 22 (6): 745–755. https://doi.org/10.1089/ees.2005.22.745.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 145Issue 1January 2019

History

Received: Jan 17, 2018
Accepted: Jul 12, 2018
Published online: Oct 31, 2018
Published in print: Jan 1, 2019
Discussion open until: Mar 31, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Li Pang Wang [email protected]
Assistant Professor, Institute of Environmental Engineering and Management, College of Engineering, National Taipei Univ. of Technology, Taipei 10608, Taiwan, R.O.C (corresponding author). Email: [email protected]
Yan Jhang Chen [email protected]
Ph.D. Student, Institute of Environmental Engineering and Management, College of Engineering, National Taipei Univ. of Technology, Taipei 10608, Taiwan, R.O.C. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share