Technical Papers
Jul 27, 2018

Effect of Quality Electrolyte Fluid on Removing MTBE from a Clay Soil Using Electrokinetic Technique

Publication: Journal of Environmental Engineering
Volume 144, Issue 10

Abstract

Methyl tertiary butyl ether (MTBE) is a chemical product and the most commonly used gasoline oxygenate. It is characterized as a pollutant for soil and water that has effects on human health. Research on the remediation of soil polluted with MTBE is relatively rare. This paper presents the results of laboratory experiments to study the feasibility of using the electrokinetic technique to remove MTBE from a clay soil. Tests are conducted on a clay soil contaminated with MTBE in a special apparatus, using different quality of electrolyte and direct current (DC) or alternating current (AC) electricity. The results of the tests reveal that, under laboratory conditions, MTBE can be removed from soil using the electrokinetic technique. The efficiency of remediation is dependent on the quality of electrolyte and type of applied electrical current.

Get full access to this article

View all available purchase options and get full access to this article.

References

Acar, Y. B., and A. N. Alshawabkeh. 1993. “Principles of electrokinetic remediation.” Environ. Sci. Technol. 27 (13): 2638–2647. https://doi.org/10.1021/es00049a002.
Acar, Y. B., A. N. Alshawabkeh, and R. J. Gale. 1993. “Fundamentals of extracting species from soils by electrokinetics.” Waste Mange. 13 (2): 141–151.
Acar, Y. B., R. J. Gale, and A. N. Alshawabkeh. 1995. “Electrokinetically remediation: Basics and technology status.” J. Hazard. Mater. 40 (2): 117–137. https://doi.org/10.1016/0304-3894(94)00066-P.
Acar, Y. B., R. J. Gale, G. Putnam, and J. Hamed. 1989. “Electrochemical processing of soils: Its potential use in environmental geotechnology and significance of pH gradients.” In Vol. 1 of Proc., 2nd Int. Symp. on Environmental Geotechnology, 25–38. Bethlehem, PA: Envo Publishing.
Acar, Y. B., H.-Y. Li, and R. J. Gale. 1992. “Phenol removal from kaolinite by electrokinetics.” J. Geotech. Eng. 118 (11): 1837–1852. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:11(1837).
Alshawabkeh, A. N., and M. Bricka. 2000. “Basics and applications of electrokinetic remediation.” In Proc., Remediation Engineering of Contaminated Soils, 95–111. New York: Marcel Dekker.
Alshawabkeh, A. N., R. J. Gale, E. Ozsu-Acar, and R. M. Bricka. 1999a. “Optmization of 2-D electrode configuration for electrokinetic extraction.” J. Soil Contam. 8 (6): 617–635. https://doi.org/10.1080/10588339991339504.
Alshawabkeh, A. N., A. T. Yeung, and M. R. Bricka. 1999b. “Practical aspects of in-situ electrokinetic extraction.” J. Environ. Eng. 125 (1): 27–35. https://doi.org/10.1061/(ASCE)0733-9372(1999)125:1(27).
Altaee, A., R. Smith, and S. Mikhalovsky. 2008. “The feasibility of decontamination of reduced saline sediments from copper using the electrokinetic process.” J. Environ. Manage. 88 (4): 1611–1618. https://doi.org/10.1016/j.jenvman.2007.08.008.
An, Y. J., D. H. Kampbell, and M. E. McGill. 2002. “Toxicity of methyl tert-butyl ether (MTBE) to plants (Avena sativa, Zea mays, Triticum aestivum, and Lactuca sativa).” Environ. Toxicol. Chem. 21 (8): 1679–1682. https://doi.org/10.1002/etc.5620210820.
Asadi, A., B. B. K. Huat, M. M. Hassim, T. A. M. Mohamed, M. M. Hanafi, and N. Shariatmadari. 2009. “Electroosmotic phenomena in organic soils.” Am. J. Environ. Sci. 5 (3): 310–314. https://doi.org/10.3844/ajessp.2009.310.314.
Atienza, J., P. Aragón, M. S. Herrero, R. Puchades, and A. Maquieira. 2005. “State of the art in the determination of MTBE in natural waters and soil.” Crit. Rev. Anal. Chem. 35 (4): 317–337. https://doi.org/10.1080/10408340500431280.
Ayotte, J. D., D. M. Argue, F. J. McGarry, J. R. Degnan, L. Hayes, S. M. Flanagan, and D. R. Helsel. 2008. “Methyl tert-butyl ether (MTBE) in public and private wells in New Hampshire: Occurrence, factors, and possible implications.” Environ. Sci. Technol. 42 (3): 677–684. https://doi.org/10.1021/es071519z.
Bruell, C. J., B. A. Segall, and M. T. Walsh. 1992. “Electroosmotic removal of gasoline hydrocarbons and TCE from clay.” J. Environ. Eng. 118 (1): 68–83. https://doi.org/10.1061/(ASCE)0733-9372(1992)118:1(68).
Chen, C. S., Y. C. Hseu, S. H. Liang, J. Y. Kuo, and S. C. Chen. 2008. “Assessment of genotoxicity of methyl-tert-butyl ether, benzene, toluene, ethylbenzene, and xylene to human lymphocytes using comet assay.” J. Hazard. Mater. 153 (1–2): 351–356. https://doi.org/10.1016/j.jhazmat.2007.08.053.
Chen, D. Z., J. M. Chen, and W. H. Zheng. 2009. “Enhancement of methyl tert-butyl ether degradation.” J. Hazard. Mater. 167 (1–3): 860–865. https://doi.org/10.1016/j.jhazmat.2009.01.065.
Deeb, R. A., K.-H. Chu, T. Shih, S. Linder, I. Suffet, M. C. Kavanaugh, and L. Alvarez-Cohen. 2003. “MTBE and other oxygenates: Environmental sources, analysis, occurrence and treatment.” Environ. Eng. Sci. 20 (5): 433–447. https://doi.org/10.1089/109287503768335922.
Denisov, G., R. E. Hicks, and R. F. Probstein. 1996. “On the kinetics of charged contaminant removal from soils using electric fields.” J. Colloid Interface Sci. 178 (1): 309–323. https://doi.org/10.1006/jcis.1996.0119.
Edwards, D. A., Z. Adeel, and R. G. Luthy. 1994. “Distribution of nonionic surfactant and phenanthrene in a sediment/aqueous system.” Environ. Sci. Technol. 28 (8): 1550–1560. https://doi.org/10.1021/es00057a027.
Estabragh, A. R., A. T. Bordbar, F. Ghaziani, and A. A. Javadi. 2016. “Removing of MTBE from a clay soil using electrokinetic technique.” Environ. Technol. 37 (14): 1745–1756. https://doi.org/10.1080/09593330.2015.1131750.
Eykholt, G. R., and D. E. Daniel. 1994. “Impact of system chemistry on electroosmosis in contaminated soil.” J. Geotech. Eng. 120 (5): 797–815. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:5(797).
Guedes, P., E. P. Mateus, N. Couto, Y. Rodríguez, and A. B. Ribero. 2014. “Electrokinetic remediation of six emerging organic contaminants.” Chemosphere 117: 124–131. https://doi.org/10.1016/j.chemosphere.2014.06.017.
Hamed, J., Y. B. Acar, and R. J. Gale. 1991. “Pb(II) removal from kaolinite by electrokinetics.” J. Geotech. Eng. 117 (2): 241–271. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:2(241).
Han, H. M., Y. J. Lee, S.-H. Kim, and J. W. Yang. 2009. “Electrokinetic remediation of soil contaminated with diesel oil using EDTA-cosolvent solutions.” Sep. Sci. Technol. 44 (10): 2437–2454. https://doi.org/10.1080/01496390902983794.
Ho, S. V., et al. 1999a. “The lasagna technology for in situ soil remediation. 1: Small field test.” Environ. Sci. Technol. 33 (7): 1086–1091. https://doi.org/10.1021/es980332s.
Ho, S. V., et al. 1999b. “The lasagna technology for in situ soil remediation. 2: Large field test.” Environ. Sci. Technol. 33 (7): 1092–1099. https://doi.org/10.1021/es980414g.
Hsieh, L. T., H. H. Yang, and H. W. Chen. 2006. “Ambient BTEX and MTBE in the neighborhoods of different industrial parks in southern Taiwan.” J. Hazard. Mater. 128 (2–3): 106–115. https://doi.org/10.1016/j.jhazmat.2005.08.001.
Hunter, R. J. 1981. Zeta potential in colloid science: Principles and application. London: Academic Press.
Jeon, C.-S., J.-S. Yang, K.-J. Kim, and K. Baek. 2010. “Electrokinetic removal of petroleum hydrocarbon from residual clayey soil following washing process.” Clean 38 (2): 189–193. https://doi.org/10.1002/clen.200900190.
Johnson, R., J. Pankow, D. Bender, C. Price, and J. Zogorski. 2000. “MTBE—To what extent will past releases contaminate community water supply well?” Environ. Sci. Technol. 34 (9): 210A–217A. https://doi.org/10.1021/es003268z.
Kim, H. S., and W. J. Weber. 2003. “Preferential surfactant utilization by a PAH-degrading strain: Effects on micellar solubilization phenomena.” Environ. Sci. Technol. 37 (16): 3574–3580. https://doi.org/10.1021/es0210493.
Kim, J., and K. Lee. 1999. “Effects of electric field directions on surfactant enhanced electrokinetic remediation of diesel-contaminated sand column.” J. Environ. Sci. Health A 34 (4): 863–877. https://doi.org/10.1080/10934529909376870.
Kim, J.-H., J.-Y. Kim, and S.-S. Kim. 2009. “Effect of H2SO4 and HCl in the anode purging solution for the electrokinetic-Fenton remediation of soil contaminated with phenanthrene.” J. Environ. Sci. Health A 44 (11): 1111–1119. https://doi.org/10.1080/10934520903005129.
Kim, S.-O., S.-H. Moor, and K.-W. Kim. 2000. “Enhanced electrokinetic soil remediation for removal of organic contaminants.” Environ. Technol. 21 (4): 417–426. https://doi.org/10.1080/09593332108618101.
Kimball, S. L. 1992. “Surfactant-enhanced soil flushing: An overview of an in situ remedial technology for soils contaminated with hydrophobic hydrocarbons.” In Proc., Hyrocarbon Contaminated Soil, edited by P. T. Kostecki, E. J. Calabrese, and M. Bonazountas. Boca Raton, FL: Lewis.
Ko, S., M. A. Schlautman, and E. R. Carraway. 1998. “Effect of solution chemistry on the partitioning of phenanthrene to sorbed surfactants.” Environ. Sci. Technol. 32 (22): 3542–3548. https://doi.org/10.1021/es9804565.
Lancelot, F., H. Londiche, and G. De Marsily. 1990. “Experimental results on the influence of electric fields on the migration of oil, ionic species and water in porous media.” J. Pet. Sci. Eng. 4 (1): 67–74. https://doi.org/10.1016/0920-4105(90)90047-7.
Li, R. S., and L. Y. Li. 2000. “Enhancement of electrokinetic extraction from lead-spiked soils.” J. Environ. Eng. 126 (9): 849–857. https://doi.org/10.1061/(ASCE)0733-9372(2000)126:9(849).
Lo, K. Y., K. S. Ho, and H. H. Inculet. 1991. “Field tests of electroosmotic strengthening of soft sensitive clay.” Can. Geotech. J. 28 (1): 74–83. https://doi.org/10.1139/t91-008.
Lukacs, K. D., and J. W. Jorgenson. 1985. “Capillary zone electrophoresis: Effect of physical parameters on separation efficiency and quantitation.” J. Sep. Sci. 8 (8): 475–480. https://doi.org/10.1002/jhrc.1240080810.
Meegoda, N. J., and P. Ratnaweera. 1995. “Treatment of oil-contaminated soils for identification and classification.” Geotech. Test. J. 18 (1): 41–49. https://doi.org/10.1520/GTJ10120J.
Méndez, E., M. Pérez, O. Romero, E. D. Beltrán, S. Castro, J. I. Corona, A. Corona, M. C. Cuevas, and E. Bustos. 2012. “Effect of electrode materials on the efficiency of hydrocarbon removal by an electrokinetic remediation process.” Electrochim. Acta 86: 148–156. https://doi.org/10.1016/j.electacta.2012.04.042.
Mitchell, J. K. 1993. Fundamentals of soil behavior. 2nd ed. New York: Wiley.
Mohamedelhassan, E., and J. Q. Shang. 2001. “Effect of electrode materials and current intermittence in electro-osmosis.” Proc. Civ. Eng. Ground Improv. 5 (1): 3–11. https://doi.org/10.1680/grim.2001.5.1.3.
Mohanty, S., J. Jasmine, and S. Mukherji. 2013. “Practical considerations and challenges involved in surfactant enhanced bioremediation of oil.” Biomed. Res. Int. 2013: 1–16. https://doi.org/10.1155/2013/328608.
Mulligan, C. N., R. N. Yong, and B. F. Gibbs. 2001. “Surfactant-enhanced remediation of contaminated soil. A review.” Eng. Geol. 60 (1–4): 371–380. https://doi.org/10.1016/S0013-7952(00)00117-4.
Murillo-Rivera, B., I. Labastida, J. Barrón, M. T. Oropeza-Guzman, I. González, and M. M. M. Teutli-Leon. 2009. “Influence of anolyte and catholyte composition on TPHs removal from low permeability soil by electrokinetic reclamation.” Electrochim. Acta 54 (7): 2119–2124. https://doi.org/10.1016/j.electacta.2008.09.054.
Probstein, R. F., and R. E. Hicks. 1993. “Removal of contaminants from soils by electric fields.” Science 260 (5107): 498–503. https://doi.org/10.1126/science.260.5107.498.
Ravera, M., C. Ciccarelli, D. Gastaldi, C. Rinaudo, C. Castelli, and D. Osella. 2006. “An experimental in the electrokinetic removal of copper from soil contaminated by the Brass industry.” Chemosphere 63 (6): 950–955. https://doi.org/10.1016/j.chemosphere.2005.08.068.
Reddy, K. R., C. Chaparro, and R. E. Saichek. 2003. “Iodide-enhanced electrokinetic remediation of mercury contaminated soil.” J. Environ. Eng. 129 (12): 1137–1148. https://doi.org/10.1061/(ASCE)0733-9372(2003)129:12(1137).
Reddy, K. R., and S. Chinthamreddy. 2003. “Sequentially enhanced electrokinetic remediation of heavy metals in low buffering clayey soils.” J. Geotech. Geoenviron. 129 (3): 263–277. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:3(263).
Reddy, K. R., S. Danda, and R. Saichek. 2004. “Complicating factors of using ethylenediamine tetraacetic acid to enhance electrokinetic remediation of multiple heavy metals in clayey soils.” J. Environ. Eng. 130 (11): 1357–1366. https://doi.org/10.1061/(ASCE)0733-9372(2004)130:11(1357).
Reed, B. E., M. T. Berg, J. C. Thompson, and J. H. Hatfield. 1995. “Chemical conditioning of electrode reservoirs during electrokinetic soil flushing of Pb-contaminated silt loam.” J. Environ. Eng. 121 (11): 805–815. https://doi.org/10.1061/(ASCE)0733-9372(1995)121:11(805).
Ribeiro, A. B., E. P. Mateus, and J. M. Rodrígiez-Maroto. 2011. “Removal of organic contaminants from soils by an electrokinetic process: The case of molinate and bentazone. Experimental and modeling.” Sep. Purif. Technol. 79 (2): 193–203. https://doi.org/10.1016/j.seppur.2011.01.045.
Ritirong, A., R. S. Douglas, J. Q. Shang, and E. C. Lee. 2008. “Electrokinetic improvement soft clay using electrical vertical drains.” Geosynth. Int. 15 (5): 369–381. https://doi.org/10.1680/gein.2008.15.5.369.
Rosen, M. J. 1989. Surfactants and interfacial phenomena. New York: Wiley.
Saichek, R. E., and K. R. Reddy. 2003. “Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil.” Chemosphere 51 (4): 273–287. https://doi.org/10.1016/S0045-6535(02)00849-4.
Saichek, R. E., and K. R. Reddy. 2005. “Surfactant-enhanced electrokinetic remediation of polycyclic aromatic hydrocarbons in heterogeneous subsurface environment.” J. Environ. Eng. Sci. 4 (5): 327–339. https://doi.org/10.1139/s04-064.
Schultz, D. S. 1997. “Electroosmosis technology for soil remediation laboratory results, field trial and economic modeling.” J. Hazard. Mater. 55 (1–3): 81–91. https://doi.org/10.1016/S0304-3894(97)00014-9.
Shapiro, A. P., and R. R. Probstein. 1993. “Removal of contaminants from saturated clay by electroosmosis.” Environ. Sci. Technol. 27 (2): 283–291. https://doi.org/10.1021/es00039a007.
Subramaniam, K., C. Stepp, J. J. Pignatello, B. Smets, and D. Grasso. 2004. “Enhancement of polynuclear aromatic hydrocarbon desorption by complexing agents in weathered soil.” Environ. Eng. Sci. 21 (4): 515–523. https://doi.org/10.1089/1092875041358485.
USEPA (US Environmental Protection Agency). 1997. Status of electrokinetic remediation technology. Washington, DC: USEPA.
USEPA (US Environmental Protection Agency). 2007. Ultrasonic extraction method. Washington, DC: USEPA.
Wang, J. Y., X.-J. Huang, K. Jimmy, and O. Statani Kova. 2006. “Removal of heavy metals from kaolin using an upward electrokinetic soil remedial (UESR) technology.” J. Hazard. Mater. 136 (3): 532–541. https://doi.org/10.1016/j.jhazmat.2006.01.029.
Wong, J. S. H., R. E. Hicks, and R. F. Probstein. 1997. “EDTA enhanced electro remediation of metal contaminated soils.” J. Hazard. Mater. 55 (1–3): 61–79. https://doi.org/10.1016/S0304-3894(97)00008-3.
Yang, Y., D. Ratt, B. F. Smets, J. J. Pignatello, and D. Grasso. 2001. “Mobilization of soil organic matter by complexing agents and implications for polycyclic aromatic hydrocarbon desorption.” Chemosphere 43 (8): 1013–1021. https://doi.org/10.1016/S0045-6535(00)00498-7.
Yeung, A. T., C. Hsu, and R. M. Menon. 1996. “EDTA-enhanced electrokinetic extraction of lead.” J. Geotech. Eng. 122 (8): 666–673. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:8(666).
Yong, R. N. 2001. Geoenvironmental engineering, contaminated soils pollutant fate and mitigation. Boca Raton, FL: CRC Press.
Yu, X., and J. Gu. 2006. “Uptake metabolism and toxicity of methyl tert-butyl ether (MTBE) in weeping willow.” J. Hazard. Mater. 137 (3): 1417–1423. https://doi.org/10.1016/j.jhazmat.2006.04.024.
Zhou, D. M., C.-F. Deng, and L. Cang. 2004. “Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents.” Chemosphere 56 (3): 265–273. https://doi.org/10.1016/j.chemosphere.2004.02.033.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 144Issue 10October 2018

History

Received: Sep 26, 2016
Accepted: Apr 26, 2018
Published online: Jul 27, 2018
Published in print: Oct 1, 2018
Discussion open until: Dec 27, 2018

Permissions

Request permissions for this article.

Authors

Affiliations

A. R. Estabragh [email protected]
Associate Professor, Faculty of Soil and Water Engineering, Univ. of Tehran, P.O. BOX 4411, Karaj 31587-77871, Iran (corresponding author). Email: [email protected]
A. T. Bordbar [email protected]
Postgraduate Student, Faculty of Soil and Water Engineering, Univ. of Tehran, P.O. BOX 4411, Karaj 31587-77871, Iran. Email: [email protected]
A. A. Javadi [email protected]
Professor, Computational Geomechanics Group, Dept. of Engineering, Univ. of Exeter, Exeter, Devon EX4 4QF, UK. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share