Abstract

Traditionally, flood protection measures have focused on high investment alternatives for control infrastructures that will benefit a certain amount of people, based in a gross cost-benefit (GCB) for the defined design flood. This gross cost-benefit approach, however, does not fully incorporate risk assessment into the analysis, given that it assumes that the chosen flood protection measures will provide protection against a design flood by avoiding flood damage every year during the project’s lifespan. This paper presents a probabilistic view of the benefits of implementing flood control measures, incorporating the risk concept to a full flood cost analysis, for an example region in Brazil. By combining analysis on annual expected damage, which considered the likelihood of n flood events along the year—and not only the project one—and two flood management measures (levee and land zoning flood hazard), this paper evaluates why, and by how much, the inclusion of the probability of effectiveness of a given flood protection measure differs from traditional methods based on gross benefit. Results demonstrated a large difference between verifying a measure’s benefits by the GCB and the expected damage: whereas the former indicates the levee structure resulting in a lower accumulated damage from the fifth year of measure implementation, if the expected damage is used, investing in land zoning will be always most cost effective. These findings are useful to highlight that full flood costs should be based on risk evaluation, which is consonant with the latest perception of the assessment and management of flood risks, such as the Floods Directive present in the EU Water Framework Directive.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This study was developed as part of the project “Development and support for the implementation of an integrated strategy for the prevention of risks associated with hydrological regimes in the Taquari-Antas Basin—RS,” conducted by the Center for Studies and Research on Disasters (CEPED/RS) of the Federal University of Rio Grande do Sul (UFRGS/Brazil), with funding from the Brazilian National Secretariat of Civil Defense (SEDEC) of the Ministry of National Integration (MI), and supported by the State Civil Defense Coordination of Rio Grande do Sul (CEDEC/RS). The authors thank the Brazilian National Council for Scientific and Technological Development (CNPq) for the Master’s and Research Productivity grants and to CAPES for support in collaborative research under CsF PVE Grant Nos. 88881.064986/2014-01 and 88881.065004/2014-01.

References

ABEP (Associação Brasileira de Empresas e Pesquisa). 2007. “Critério Brasil.” Accessed February 9, 2015. http://www.abep.org/criterioBrasil.aspx.
ABNT (Associação Brasileira de Normas Técnicas). 2005. NBR 12721: Evaluation criteria for unit costs and elaborations of construction budget for incorporation of joint ownership building—Procedure. Rio de Janeiro, Brazil: ABNT.
AHSUL (Administração das Hidrovias do Sul). 2007. Taquari River floods (unpublished personal information). Porto Alegre, Brazil: José Luiz Fay de Azambuja.
Arnell, N. 1989. Human influences on hydrological behavior. Paris: UNESCO International Literature Survey.
Bombassaro, M., and L. E. S. Robaina. 2010. “Contribuição geográfica para o estudo das inundações na bacia hidrográfica do rio Taquari-Antas, RS.” Geografias 6 (2): 69–86.
Both, G. C., C. Haetinger, E. R. Ferreira, V. L. Diedrich, and J. L. F. Azambuja. 2008. “Uso da modelagem matemática para a previsão de enchentes no Vale do Taquari.” VI Simpósio de Engenharia Ambiental. Serra Negra, Brasil. Accessed November 16, 2015. http://ensino.univates.br/∼chaet/Materiais/Modelagem/trab01000140.pdf.
Buurman, J., and V. Babovic. 2017. “Adaptation pathways and real options analysis: An approach to deep uncertainty in climate change adaptation policies.” Policy Soc. 35 (2): 137–150. https://doi.org/10.1016/j.polsoc.2016.05.002.
Chen, X. Y., K. W. Chau, and A. O. Busari. 2015. “A comparative study of population-based optimization algorithms for downstream river flow forecasting by a hybrid neural network model.” Eng. Appl. Artif. Intell. 46 (Nov): 258–268. https://doi.org/10.1016/j.engappai.2015.09.010.
Crichton, D. 1999. “The risk triangle.” Accessed April 8, 2015. http://www.ilankelman.org/crichton.html.
Cunha, S., and F. Taveira-Pinto. 2011. “Aplicação de uma metodologia de análise de risco de inundações à zona ribeirinha do Peso da Régua.” In Proc., IV Jornada de Hidráulica, Recursos Hídricos e Ambiente, 103–112. Porto, Portugal: FEUP.
Deckers, P., W. Kellens, J. Reyns, W. Vanneuville, and P. Maeyer. 2010. A GIS for flood risk management in Flanders. Ghent, Belgium: Ghent Univ.
Deng, Y., M.-A. Cardin, V. Babovic, D. Santhanakrishnan, P. Schmitter, and A. Meshgi. 2013. “Valuing flexibilities in the design of urban water management systems.” Water Res. 47 (20): 7162–7174. https://doi.org/10.1016/j.watres.2013.09.064.
Dutta, D., S. Herath, and K. Musiakec. 2003. “A mathematical model for flood loss estimation.” J. Hydrol. 277 (1–2): 24–49. https://doi.org/10.1016/S0022-1694(03)00084-2.
Eckhardt, R. R. 2008. “Geração de modelo cartográfico aplicado ao mapeamento das áreas sujeiras às inundações urbanas na cidade de Lajeado/RS.” M.Sc. thesis, Universidade Federal do Rio Grande do Sul.
European Union. 2007. “Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks.” Accessed December 6, 2016. http://data.europa.eu/eli/dir/2007/60/oj.
Fadel, A. W. 2015. “Incorporação do risco de prejuízo no gerenciamento de medidas de controle de inundação.” M.Sc. thesis, Universidade Federal do Rio Grande do Sul.
Ferri, G., and A. C. Togni. 2012. A história da bacia Taquari-Antas. Lajeado, Brazil: Ed. da Univates.
Foudi, S., N. Osés-Eraso, and I. Tamayo. 2015. “Integrated spatial flood risk assessment: The case of Zaragoza.” Land Use Policy 42 (Jan): 278–292. https://doi.org/10.1016/j.landusepol.2014.08.002.
Gholami, V., K.-W. Chau, F. Fadaie, J. Torkaman, and A. Ghaffari. 2015. “Modeling of groundwater level fluctuations using dendrochronology in alluvial aquifers.” J. Hydrol. 529 (Oct): 1060–1069. https://doi.org/10.1016/j.jhydrol.2015.09.028.
GWP (Global Water Partnership). 2017. “The future we want: From flood control to integrated flood management.” Accessed February 2, 2018. http://futurewewant.org/portfolio/from-flood-control-to-integrated-flood-management/.
IBGE (Instituto Brasileiro de Geografia e Estatística). 2011. Base de informações do Censo Demográfico 2010: Resultados do Universo por setor censitário. Rio de Janeiro, Brasil: Centro de Documentação e Disseminação de Informações.
IPH (Instituto de Pesquisas Hidráulicas da UFRGS). 2015. Relatório de caracterização da bacia hidrográfica Taquari-Antas. Desenvolvimento e preparação da implantação de uma estratégia integrada de prevenção de riscos associados a regimes hidrológicos na bacia do Taquari-Antas. Porto Alegre, Brasil: IPH.
Jacobs, L., and R. Worthley. 1999. “A comparative study of risk appraisal: A new look at risk assessment in different countries.” Environ. Monit. Assess. 59 (2): 225–247. https://doi.org/10.1023/A:1006163606270.
Kobayashi, Y., and J. W. Porter. 2012. Flood risk management in the People’s Republic of China: Learning to live with flood risk. Mandaluyong City, Philippines: Asian Development Bank.
Kurek, R. K. M. 2012. Avaliação do tempo de retorno dos níveis das inundações no Vale do Taquari/RS. Lajeado, Brasil: Centro Universitário UNIVATES.
Larentis, D. G., W. Collischonn, and C. E. M. Tucci. 2008. “Simulação da qualidade de água em Grandes Bacias: Rio Taquari-Antas, RS.” Revista Brasileira de Recursos Hídricos 13 (3): 05–22. https://doi.org/10.21168/rbrh.v13n3.p5-22.
Lekuthai, A., and S. Vongvisessomjai. 2001. “Intangible flood damage quantification.” Water Resour. Manage. 15 (5): 343–362. https://doi.org/10.1023/A:1014489329348.
Machado, M. L., et al. 2005. “Curvas de danos de inundação versus profundidade de submersão: desenvolvimento de metodologia.” Revista de gestão de água da América Latina (REGA) 2 (1): 35–52.
Medeiros, M. J. 2011. “Diagnóstico da ocorrência de inundações no Brasil como ferramenta de planejamento: O Atlas de Vulnerabilidade a Inundações.” In Proc., XIX Simpósio Brasileiro de Recursos Hídricos. Maceió, Brazil.
Messner, F., et al. 2007. Evaluating flood damages: Guidance and recommendations on principles and methods. Wallingford, UK: FLOODsite.
Nagem, F. R. M. 2008. “Avaliação econômica dos prejuízos causados pelas cheias urbanas.” M.Sc. thesis, Universidade Federal do Rio de Janeiro.
Olyaie, E., H. Banejad, K.-W. Chau, and A. M. Melesse. 2015. “A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: A case study in United States.” Environ. Monit. Assess. 187 (4): 189. https://doi.org/10.1007/s10661-015-4381-1.
Paithankar, Y. 2013. “Flood management.” Accessed February 2, 2018. http://www.india-wris.nrsc.gov.in/wrpinfo/index.php?title=Flood_Management.
Penning-Rowsell, E., C. Johnson, S. Tunstall, S. Tapsell, J. Morris, J. Chatterton, and C. Green. 2005. The benefits of flood and coastal risk management: A handbook of assessment techniques, 81. London: Middlesex University Press.
Penning-Rowsell, E. C., and J. B. Chatterton. 1977. The benefits of flood alleviation: A manual of assessment techniques, 297. Market Rasen, UK: Saxon House.
Rio Grande do Sul, Secretaria de Obras Públicas, Irrigação e Desenvolvimento Urbano. 2015. “Estudos de alternativas para minimização do efeito das cheias do trecho baixo do Rio Caí/RS.” Accessed February 24, 2015. http://www.metroplan.rs.gov.br/lista/671.
Scholtes, S., and R. Neufille. 2011. “Flexibility in engineering design.” MIT Press. Accessed February 2, 2018. https://mitpress.mit.edu/books/flexibility-engineering-design.
SINDUSCON (Sindicato das Indústrias da Construção Civil do Rio Grande do Sul). 2015. “Custo Unitário Básico do RS.” Accessed July 22, 2015. http://www.sinduscon-rs.com.br/produtos-e-servicos/pesquisas-e-indices/cub-rs.
Tachini, M. 2010. “Avaliação de danos associados às inundações no município de Blumenau.” Ph.D. thesis, Universidade Federal de Santa Catarina.
Tucci, C. E. M. 2009. Hidrologia: Ciência e Aplicação, 943. Porto Alegre, Brazil: Editora UFRGS.
UNISDR (United Nations Office for Disaster Risk Reduction). 2002. Guidelines for reducing flood losses, 79. New York: United Nations.
USACE. 2015. “Computer software for hydrologic engineering and planning analysis procedures.” Accessed December 3, 2015. http://www.hec.usace.army.mil/software.
Wang, W.-C., K.-W. Chau, D.-M. Xu, L. Qiu, and C.-C. Liu. 2017. “The annual maximum flood peak discharge forecasting using hermite projection pursuit regression with SSO and LS method.” Water Resour. Manage. 31 (1): 461–477. https://doi.org/10.1007/s11269-016-1538-9.
World Bank and United Nations. 2010. Natural hazards, unnatural disasters: The economics of effective prevention. Washington, DC: World Bank Publications.
Wu, C. L., K. W. Chau, and C. Fan. 2010. “Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques.” J. Hydrol. 389 (1–2): 146–167. https://doi.org/10.1016/j.jhydrol.2010.05.040.
Zhang, S. X., and V. Babovic. 2011. “An evolutionary real options framework for the design and management of projects and systems with complex real options and exercising conditions.” Decis. Support Syst. 51 (1): 119–129. https://doi.org/10.1016/j.dss.2010.12.001.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 144Issue 9September 2018

History

Received: Dec 20, 2016
Accepted: Feb 27, 2018
Published online: Jun 18, 2018
Published in print: Sep 1, 2018
Discussion open until: Nov 18, 2018

Permissions

Request permissions for this article.

Authors

Affiliations

Amanda W. Fadel [email protected]
Ph.D. Student, Institute of Hydraulic Research, Universidade Federal do Rio Grande do Sul, Bento Gonçalves Ave., 9500 Porto Alegre-RS, Brazil (corresponding author). Email: [email protected]
Guilherme F. Marques, Ph.D. [email protected]
Full Professor, Institute of Hydraulic Research, Universidade Federal do Rio Grande do Sul, Bento Gonçalves Ave., 9500 Porto Alegre-RS, Brazil. Email: [email protected]
Joel A. Goldenfum, Ph.D. [email protected]
Full Professor, Institute of Hydraulic Research, Universidade Federal do Rio Grande do Sul, Bento Gonçalves Ave., 9500 Porto Alegre-RS, Brazil. Email: [email protected]
Josué Medellín-Azuara, Ph.D. [email protected]
Associate Professor, Dept. of Civil and Environmental Engineering, UC Agricultural Issues Center, Univ. of California, 5200 N. Lake Rd., Merced, CA 95343. Email: [email protected]
Amaury Tilmant, Ph.D. [email protected]
Professor, Dept. of Civil and Water Engineering, Université Laval, 1065 Av de la Médecine, Québec, QC, Canada G1V 0A6. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share