Abstract

In this study, a novel adsorbent process was developed using a deep eutectic solvent (DES) system based on benzyltriphenylphosphonium chloride (BTPC) as a functionalization agent of carbon nanotubes (CNTs) for arsenic ion removal from water. The nonlinear autoregressive network with exogenous inputs (NARX) neural network strategy was used for the modeling and predicting the adsorption capacity of functionalized carbon nanotubes. The developed adsorbent was characterized using zeta potential, Fourier transform infrared (FTIR), and Raman spectroscopy. The effects of operational parameters such as initial concentration, adsorbent dosage, pH, and contact time are studied to investigate the optimum conditions for maximum arsenic removal. Three kinetic models were used to identify the adsorption rate and mechanism, and the pseudo-second order best described the adsorption kinetics. Four statistical indicators were used to determine the efficiency and accuracy of the NARX model, with a minimum value of mean square error, 6.37×104. In addition, a sensitivity study of the parameters involved in the experimental work was performed. The NARX model prediction was consolidated with the experimental result and proved its efficiency at predicting arsenic removal from water with a correlation coefficient R2 of 0.9818.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors express their thanks to the University of Malaya for funding this research (UMRG RP044D-17AET and RP025A-18SUS).

References

Abbott, A. P., D. Boothby, G. Capper, D. L. Davies, and R. K. Rasheed. 2004. “Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids.” J. Am. Chem. Soc. 126 (29): 9142–9147. https://doi.org/10.1021/ja048266j.
Abbott, A. P., G. Capper, K. J. McKenzie, and K. S. Ryder. 2007. “Electrodeposition of zinc-tin alloys from deep eutectic solvents based on choline chloride.” J. Electroanal. Chem. 599 (2): 288–294. https://doi.org/10.1016/j.jelechem.2006.04.024.
Abbott, A. P., J. Griffith, S. Nandhra, C. O’Connor, S. Postlethwaite, K. S. Ryder, and E. L. Smith. 2008. “Sustained electroless deposition of metallic silver from a choline chloride-based ionic liquid.” Surf. Coat. Technol. 202 (10): 2033–2039. https://doi.org/10.1016/j.surfcoat.2007.08.055.
Abo-Hamad, A., M. Hayyan, M. A. AlSaadi, and M. A. Hashim. 2015. “Potential applications of deep eutectic solvents in nanotechnology.” Chem. Eng. J. 273: 551–567. https://doi.org/10.1016/j.cej.2015.03.091.
Agami, N., A. Atiya, M. Saleh, and H. El-Shishiny. 2009. “A neural network based dynamic forecasting model for Trend Impact Analysis.” Technol. Forecasting Social Change 76 (7): 952–962. https://doi.org/10.1016/j.techfore.2008.12.004.
Ahmadi, Y., S. E. Eshraghi, P. Bahrami, M. Hasanbeygi, Y. Kazemzadeh, and A. Vahedian. 2015. “Comprehensive Water–Alternating-Gas (WAG) injection study to evaluate the most effective method based on heavy oil recovery and asphaltene precipitation tests.” J. Pet. Sci. Eng. 133: 123–129. https://doi.org/10.1016/j.petrol.2015.05.003.
Ali, I. 2012. “New generation adsorbents for water treatment.” Chem. Rev. 112 (10): 5073–5091. https://doi.org/10.1021/cr300133d.
AlOmar, M. K., M. A. Alsaadi, M. Hayyan, S. Akib, and M. A. Hashim. 2016a. “Functionalization of CNTs surface with phosphonuim based deep eutectic solvents for arsenic removal from water.” Appl. Surf. Sci. 389: 216–226. https://doi.org/10.1016/j.apsusc.2016.07.079.
AlOmar, M. K., M. Hayyan, M. A. Alsaadi, S. Akib, A. Hayyan, and M. A. Hashim. 2016b. “Glycerol-based deep eutectic solvents: Physical properties.” J. Mol. Liq. 215: 98–103. https://doi.org/10.1016/j.molliq.2015.11.032.
Atieh, M. A., O. Y. Bakather, B. Al-Tawbini, A. A. Bukhari, F. A. Abuilaiwi, and M. B. Fettouhi. 2011. “Effect of carboxylic functional group functionalized on carbon nanotubes surface on the removal of lead from water.” Bioinorg. Chem. Appl. 2010: 1–9. https://doi.org/10.1155/2010/603978.
Ayoob, S., A. Gupta, and P. Bhakat. 2007. “Performance evaluation of modified calcined bauxite in the sorptive removal of arsenic (III) from aqueous environment.” Colloids Surf. A 293 (1): 247–254. https://doi.org/10.1016/j.colsurfa.2006.07.039.
Banerjee, A., P. Sarkar, and S. Banerjee. 2016. “Application of statistical design of experiments for optimization of As (V) biosorption by immobilized bacterial biomass.” Ecol. Eng. 86: 13–23. https://doi.org/10.1016/j.ecoleng.2015.10.015.
Chen, J. P., and S. Wu. 2004. “Acid/base-treated activated carbons: Characterization of functional groups and metal adsorptive properties.” Langmuir 20 (6): 2233–2242. https://doi.org/10.1021/la0348463.
Chen, S., S. Billings, and P. Grant. 1990. “Non-linear system identification using neural networks.” Int. J. Control 51 (6): 1191–1214. https://doi.org/10.1080/00207179008934126.
Cho, D.-W., H. Song, B. Kim, F. W. Schwartz, and B.-H. Jeon. 2015. “Reduction of nitrate in groundwater by Fe(o)/magnetite nanoparticles entrapped in Ca-Alginate beads.” Water Air Soil Pollut. 226 (7): 206. https://doi.org/10.1007/s11270-015-2467-6.
Cooper, E. R., C. D. Andrews, P. S. Wheatley, P. B. Webb, P. Wormald, and R. E. Morris. 2004. “Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues.” Nature 430 (7003): 1012–1016. https://doi.org/10.1038/nature02860.
Çoruh, S., F. Geyikçi, E. Kılıç, and U. Çoruh. 2014. “The use of NARX neural network for modeling of adsorption of zinc ions using activated almond shell as a potential biosorbent.” Bioresour. Technol. 151: 406–410. https://doi.org/10.1016/j.biortech.2013.10.019.
Das, B., N. Mondal, R. Bhaumik, and P. Roy. 2014. “Insight into adsorption equilibrium, kinetics and thermodynamics of lead onto alluvial soil.” Int. J. Environ. Sci. Technol. 11 (4): 1101–1114. https://doi.org/10.1007/s13762-013-0279-z.
Di, G., et al. 2017. “Simultaneous removal of several pharmaceuticals and arsenic on Zn-Fe mixed metal oxides: Combination of photocatalysis and adsorption.” Chem. Eng. J. 328: 141–151.
Ding, Z., X. Hu, V. L. Morales, and B. Gao. 2014. “Filtration and transport of heavy metals in graphene oxide enabled sand columns.” Chem. Eng. J. 257: 248–252. https://doi.org/10.1016/j.cej.2014.07.034.
Fayaed, S. S., A. El-Shafie, and O. Jaafar. 2011. “Performance of artificial neural network and regression techniques for simulation model in reservoir inter-relationships.” Int. J. Phys. Sci. 6 (34): 7738–7748. https://doi.org/10.5897/IJPS11.314.
Fayaed, S. S., A. El-Shafie, and O. Jaafar. 2013a. “Adaptive neuro-fuzzy inference system–based model for elevation–surface area–storage interrelationships.” Neural Comput. Appl. 22 (5): 987–998. https://doi.org/10.1007/s00521-011-0790-4.
Fayaed, S. S., A. El-Shafie, and O. Jaafar. 2013b. “Integrated artificial neural network (ANN) and stochastic dynamic programming (SDP) model for optimal release policy.” Water Resour. Manage. 27 (10): 3679–3696. https://doi.org/10.1007/s11269-013-0373-5.
Gorke, J. T., F. Srienc, and R. J. Kazlauskas. 2008. “Hydrolase-catalyzed biotransformations in deep eutectic solvents.” Chem. Commun. 10 (10): 1235–1237. https://doi.org/10.1039/b716317g.
Gupta, V. K., S. Agarwal, and T. A. Saleh. 2011. “Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal.” J. Hazard. Mater. 185 (1): 17–23. https://doi.org/10.1016/j.jhazmat.2010.08.053.
Gupta, V. K., A. Rastogi, V. Saini, and N. Jain. 2006. “Biosorption of copper(II) from aqueous solutions by Spirogyra species.” J. Colloid Interface Sci. 296 (1): 59–63. https://doi.org/10.1016/j.jcis.2005.08.033.
Hayati, B., A. Maleki, F. Najafi, H. Daraei, F. Gharibi, and G. McKay. 2016. “Synthesis and characterization of PAMAM/CNT nanocomposite as a super-capacity adsorbent for heavy metal (Ni 2+, Zn 2+, As 3+, Co 2+) removal from wastewater.” J. Mol. Liq. 224: 1032–1040.
Hayyan, M., A. Abo-Hamad, M. A. AlSaadi, and M. A. Hashim. 2015. “Functionalization of graphene using deep eutectic solvents.” Nanoscale Res. Lett. 10 (1): 324. https://doi.org/10.1186/s11671-015-1004-2.
Hu, S., Q. Shi, and C. Jing. 2015. “Groundwater arsenic adsorption on granular TiO2: Integrating atomic structure, filtration, and health impact.” Environ. Sci. Technol. 49 (16): 9707–9713. https://doi.org/10.1021/acs.est.5b01520.
Jain, A., and M. Agarwal. 2017. “Kinetic equilibrium and thermodynamic study of arsenic removal from water using alumina supported iron nano particles.” J. Water Process Eng. 19: 51–59.
Kamble, S. P., S. Jagtap, N. K. Labhsetwar, D. Thakare, S. Godfrey, S. Devotta, and S. S. Rayalu. 2007. “Defluoridation of drinking water using chitin, chitosan and lanthanum-modified chitosan.” Chem. Eng. J. 129 (1): 173–180. https://doi.org/10.1016/j.cej.2006.10.032.
Kazemipour, M., M. Ansari, S. Tajrobehkar, M. Majdzadeh, and H. R. Kermani. 2008. “Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone.” J. Hazard. Mater. 150 (2): 322–327. https://doi.org/10.1016/j.jhazmat.2007.04.118.
Kocabaş-Ataklı, Z. Ö., and Y. Yürüm. 2013. “Synthesis and characterization of anatase nanoadsorbent and application in removal of lead, copper and arsenic from water.” Chem. Eng. J. 225: 625–635. https://doi.org/10.1016/j.cej.2013.03.106.
Leroy, E., P. Decaen, P. Jacquet, G. Coativy, B. Pontoire, A.-L. Reguerre, and D. Lourdin. 2012. “Deep eutectic solvents as functional additives for starch based plastics.” Green Chem. 14 (11): 3063–3066. https://doi.org/10.1039/c2gc36107h.
Lourie, E., and E. Gjengedal. 2011. “Metal sorption by peat and algae treated peat: Kinetics and factors affecting the process.” Chemosphere 85 (5): 759–764. https://doi.org/10.1016/j.chemosphere.2011.06.055.
Luo, X., Z. Zhang, P. Zhou, Y. Liu, G. Ma, and Z. Lei. 2015. “Synergic adsorption of acid blue 80 and heavy metal ions (Cu 2+/Ni 2+) onto activated carbon and its mechanisms.” J. Ind. Eng. Chem. 27: 164–174. https://doi.org/10.1016/j.jiec.2014.12.031.
Martinez, M., et al. 2003. “Modifications of single-wall carbon nanotubes upon oxidative purification treatments.” Nanotechnology 14 (7): 691. https://doi.org/10.1088/0957-4484/14/7/301.
Mazumder, G. D. N., J. Das Gupta, A. Santra, A. Pal, A. Ghose, and S. Sarkar. 1998. “Chronic arsenic toxicity in West Bengal—The worst calamity in the world.” J. Indian Med. Assoc. 96 (1): 4–7.
McAvoy, T. J., and P. Werbos. 1992. “Long-term predictions of chemical processes using recurrent neural networks: A parallel training approach.” Ind. Eng. Chem. Res. 31 (5): 1338–1352. https://doi.org/10.1021/ie00005a014.
Mubarak, N., J. N. Sahu, J. Wong, N. Jayakumar, P. Ganesan, and E. Abdullah. 2015a. Overview on the functionalization of carbon nanotubes, 82–101. Boca Raton, FL: CRC Press.
Mubarak, N. M., R. Alicia, E. Abdullah, J. N. Sahu, A. A. Haslija, and J. Tan. 2013. “Statistical optimization and kinetic studies on removal of Zn2+ using functionalized carbon nanotubes and magnetic biochar.” J. Environ. Chem. Eng. 1 (3): 486–495. https://doi.org/10.1016/j.jece.2013.06.011.
Mubarak, N. M., J. N. Sahu, E. Abdullah, and N. Jayakumar. 2014. “Removal of heavy metals from wastewater using carbon nanotubes.” Sep. Purif. Rev. 43 (4): 311–338. https://doi.org/10.1080/15422119.2013.821996.
Mubarak, N. M., J. N. Sahu, E. Abdullah, N. Jayakumar, and P. Ganesan. 2015c. “Microwave assisted multiwall carbon nanotubes enhancing Cd (II) adsorption capacity in aqueous media.” J. Ind. Eng. Chem. 24: 24–33. https://doi.org/10.1016/j.jiec.2014.09.005.
Mubarak, N. M., J. N. Sahu, E. Abdullah, N. Jayakumar, and P. Ganesan. 2015b. “Novel microwave-assisted multiwall carbon nanotubes enhancing Cu (II) adsorption capacity in water.” J. Taiwan Inst. Chem. Eng. 53: 140–152. https://doi.org/10.1016/j.jtice.2015.02.016.
Mubarak, N. M., J. N. Sahu, E. C. Abdullah, and N. S. Jayakumar. 2016. “Rapid adsorption of toxic Pb (II) ions from aqueous solution using multiwall carbon nanotubes synthesized by microwave chemical vapor deposition technique.” J. Environ. Sci. 45: 143–155. https://doi.org/10.1016/j.jes.2015.12.025.
Mubarak, N. M., N. Sazila, S. Nizamuddin, E. Abdullah, and J. N. Sahu. 2017. “Adsorptive removal of phenol from aqueous solution by using carbon nanotubes and magnetic biochar.” NanoWorld J. 3 (2): 32–37. https://doi.org/10.17756/nwj.2017-043.
Oubagaranadin, J. U. K., and Z. Murthy. 2010. “Isotherm modeling and batch adsorber design for the adsorption of Cu (II) on a clay containing montmorillonite.” Appl. Clay Sci. 50 (3): 409–413. https://doi.org/10.1016/j.clay.2010.09.008.
Paiva, A., R. Craveiro, I. Aroso, M. Martins, R. L. Reis, and A. R. C. Duarte. 2014. “Natural deep eutectic solvents–solvents for the 21st century.” ACS Sustainable Chem. Eng. 2 (5): 1063–1071. https://doi.org/10.1021/sc500096j.
Ramos, M. L. P., J. A. González, S. G. Albornoz, C. J. Pérez, M. E. Villanueva, S. A. Giorgieri, and G. J. Copello. 2016. “Chitin hydrogel reinforced with TiO2 nanoparticles as an arsenic sorbent.” Chem. Eng. J. 285: 581–587. https://doi.org/10.1016/j.cej.2015.10.035.
Rao, G. P., C. Lu, and F. Su. 2007. “Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review.” Sep. Purif. Technol. 58 (1): 224–231. https://doi.org/10.1016/j.seppur.2006.12.006.
Ruthiraan, M., N. M. Mubarak, R. K. Thines, E. C. Abdullah, J. N. Sahu, N. S. Jayakumar, and P. Ganesan. 2015. “Comparative kinetic study of functionalized carbon nanotubes and magnetic biochar for removal of Cd2+ ions from wastewater.” Korean J. Chem. Eng. 32 (3): 446–457. https://doi.org/10.1007/s11814-014-0260-7.
Sahu, U. K., S. S. Mahapatra, and R. K. Patel. 2017. “Application of Box–Behnken Design in response surface methodology for adsorptive removal of arsenic from aqueous solution using CeO 2/Fe 2 O 3/graphene nanocomposite.” Mater. Chem. Phys. 207 (Mar): 233–242. .https://doi.org/10.1016/j.matchemphys.2017.11.042.
Smith, A. H., P. A. Lopipero, M. N. Bates, and C. M. Steinmaus. 2002. “Arsenic epidemiology and drinking water standards.” Science 296 (5576): 2145–2146. https://doi.org/10.1126/science.1072896.
Sun, Y.-P., K. Fu, Y. Lin, and W. Huang. 2002. “Functionalized carbon nanotubes: Properties and applications.” Acc. Chem. Res. 35 (12): 1096–1104. https://doi.org/10.1021/ar010160v.
Thines, R., et al. 2014. “Adsorption isotherm and thermodynamics studies of Zn (II) on functionalized and non-functionalized carbon nanotubes.” Adv. Sci. Eng. Med. 6 (9): 974–984. https://doi.org/10.1166/asem.2014.1584.
Thostenson, E. T., Z. Ren, and T.-W. Chou. 2001. “Advances in the science and technology of carbon nanotubes and their composites: A review.” Compos. Sci. Technol. 61 (13): 1899–1912. https://doi.org/10.1016/S0266-3538(01)00094-X.
Veličković, Z. S., A. D. Marinković, Z. J. Bajić, J. M. Marković, A. A. Perić-Grujić, P. S. Uskokovic, and M. D. Ristic. 2013. “Oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes for the separation of low concentration arsenate from water.” Sep. Sci. Technol. 48 (13): 2047–2058. https://doi.org/10.1080/01496395.2013.790446.
Wang, S.-X., et al. 2007. “Arsenic and fluoride exposure in drinking water: Children’s IQ and growth in Shanyin county, Shanxi province, China.” Environ. Health Perspect. 115 (4): 643–647. https://doi.org/10.1289/ehp.9270.
Wasserman, G. A., et al. 2004. “Water arsenic exposure and children’s intellectual function in Araihazar, Bangladesh.” Environ. Health Perspect. 112 (13): 1329–1333. https://doi.org/10.1289/ehp.6964.
WHO (World Health Organization). 2001. The world health report 2001: Mental health: New understanding, new hope. Geneva, Switzerland: WHO.
Witek-Krowiak, A., R. G. Szafran, and S. Modelski. 2011. “Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent.” Desalination 265 (1): 126–134. https://doi.org/10.1016/j.desal.2010.07.042.
Wu, L.-K., H. Wu, H.-B. Zhang, H.-Z. Cao, G.-Y. Hou, Y.-P. Tang, and G.-Q Zheng. 2018. “Graphene oxide/CuFe2O4 foam as an efficient absorbent for arsenic removal from water.” Chem. Eng. J. 334: 1808–1819.
Xia, S., S. Shen, X. Xu, J. Liang, and L. Zhou. 2014. “Arsenic removal from groundwater by acclimated sludge under autohydrogenotrophic conditions.” J. Environ. Sci. 26 (2): 248–255. https://doi.org/10.1016/S1001-0742(13)60413-1.
Xu, K., Y. Wang, Y. Huang, N. Li, and Q. Wen. 2015. “A green deep eutectic solvent-based aqueous two-phase system for protein extracting.” Anal. Chim. Acta 864: 9–20. https://doi.org/10.1016/j.aca.2015.01.026.
Zhang, Q., K. D. O. Vigier, S. Royer, and F. Jérôme. 2012. “Deep eutectic solvents: Syntheses, properties and applications.” Chem. Soc. Rev. 41 (21): 7108–7146. https://doi.org/10.1039/c2cs35178a.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 144Issue 8August 2018

History

Received: Sep 23, 2017
Accepted: Feb 23, 2018
Published online: Jun 14, 2018
Published in print: Aug 1, 2018
Discussion open until: Nov 14, 2018

Permissions

Request permissions for this article.

Authors

Affiliations

Seef Saadi Fiyadh [email protected]
Ph.D. Candidate, Nanotechnology and Catalysis Research Centre, Univ. of Malaya, IPS Bldg., 50603 Kuala Lumpur, Malaysia. Email: [email protected]
Senior Lecturer, Nanotechnology and Catalysis Research Centre, Univ. of Malaya, IPS Bldg., 50603 Kuala Lumpur, Malaysia (corresponding author). ORCID: https://orcid.org/0000-0001-9278-6490. Email: [email protected]
Mohamed Khalid AlOmar, Ph.D. [email protected]
Researcher, Dept. of Civil Engineering, Univ. of Malaya, Kuala Lumpur 50603, Malaysia. Email: [email protected]
Sabah Saadi Fayaed, Ph.D. [email protected]
Senior Lecturer, Civil Engineering Dept., Faculty of Engineering, Komar Univ. of Science and Technology, Sulaymaniyah 46001, Iraq. Email: [email protected]
Farouq S. Mjalli, Ph.D. [email protected]
Associate Professor, Petroleum and Chemical Engineering, Sultan Qaboos Univ., 123 Muscat, Oman. Email: [email protected]
Ahmed El-Shafie, Ph.D. [email protected]
Professor, Dept. of Civil Engineering, Univ. of Malaya, Kuala Lumpur 50603, Malaysia. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share