Technical Papers
May 9, 2018

Site Selection for Hydropower Development: A GIS-Based Framework to Improve Planning in Brazil

Publication: Journal of Environmental Engineering
Volume 144, Issue 7

Abstract

Small hydropower plants (SHPs) may be considered the most cost-effective and environmentally benign technology for energy production. However, it has been suggested that the social–environmental impacts of SHPs could be reduced through improvements to the planning stage. This work aims to develop a geographic information system (GIS)-based framework to improve SHP planning in Minas Gerais State, Brazil, by providing site selection for development based on social–environmental restrictions. The framework used a GIS-based multicriteria decision analysis based on the analytical hierarchy process (AHP) to classify and weigh each attribute used. The results indicated that the number of planned SHPs is relatively high for Minas Gerais State (203), with the majority either in the Inventory or Project Assigned stages. The results also highlighted priority and nonpriority areas for SHPs by considering the likelihood of the SHPs causing the least and greatest socioenvironmental disturbances, respectively. The GIS-based framework has proved to be effective for improving SHP development in Minas Gerais State while suggesting site selection of priority areas that are likely to cause the least negative social–environmental impacts.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors would like to acknowledge the Coordination for the Improvement of Higher Education Personnel (CAPES), Brazil, for the Master’s Degree Scholarship offered for the development of this work. Also, many thanks to Prof. Dr. Alexandre Celestino for all suggestions and help with the computation of the AHP method as well as to Bruno da Silva Marques and Bruno Ferraz Martins for helping with some of the GIS software tools.

References

Abbasi, T., and S. A. Abbasi. 2011. “Small hydro and the environmental implications of its extensive utilization.” Renewable Sustainable Energy Rev. 15 (4): 2134–2143. https://doi.org/10.1016/j.rser.2010.11.050.
Andrade, A. L., and M. A. Santos. 2015. “Hydroeletric plants environmental viability: Strategic environmental assessment application in Brazil.” Renewable Sustainable Energy 52: 1413–1423. https://doi.org/10.1016/j.rser.2015.07.152.
ANEEL (Agⓔncia Nacional de Energia Elétrica). 2016a. “Banco de informação de geração—BIG” [Generation information data]. [In Portuguese.] Accessed December 6, 2016. www.aneel.gov.br/aplicacoes/capacidadebrasil/capacidadebrasil.cfm.
ANEEL (Agⓔncia Nacional de Energia Elétrica). 2016b. “Georeferenced information system for the energy sector.” Accessed July 20, 2015. http://sigel.aneel.gov.br/portal/home/index.html.
Bakken, T. H., A. G. Aasec, D. Hagend, H. Sundta, D. N. Bartond, and P. Lujalac. 2014. “Demonstrating a new framework for the comparison of environmental impacts from small- and large-scale hydropower and wind power projects.” J. Environ. Manage. 140: 93–101. https://doi.org/10.1016/j.jenvman.2014.01.050.
Bakken, T. H., H. Sundt, and A. Harby. 2012. “Development of small versus large hydropower in Norway—Comparison of environmental impacts.” Energy Proc. 20: 185–199. https://doi.org/10.1016/j.egypro.2012.03.019.
Ballance, A., D. Stephenson, R. A. Chapman, and J. Muller. 2000. “A geographic information systems analysis of hydro power potential in South Africa.” J. Hydroinf. 2 (4): 247–254.
Bina, O., E. Xu, L. Brown, and M. R. Partidário. 2011. “Review of practice and prospects for SEA in China.” Environ. Impact Assess. Rev. 31 (6): 515–520. https://doi.org/10.1016/j.eiar.2011.04.002.
Bonnell, S., and K. Storey. 2000. “Addressing cumulative effects through strategic environmental assessment: A case study of small hydro development in Newfoundland, Canada.” J. Environ. Assess. Policy Manage. 2 (4): 477–499.
Boroushaki, S., and J. Malczewski. 2008. “Implementing an extension of the analytical hierarchy process using ordered weighted averaging operators with fuzzy quantifiers in ArcGIS.” Comput. Geosci. 34 (4): 399–410. https://doi.org/10.1016/j.cageo.2007.04.003.
Bruce, C. 2006. “Can contingent valuation resolve the ‘adding-up problem’ in environmental impact assessment?” Environ. Impact Assess. Rev. 26 (6): 570–585.
Capilla, J. A. J., J. A. Carrion, and E. Alameda-Hernadez. 2016. “Optimal site selection for upper reservoirs in pump-back systems, using geographical information systems and multicriteria analysis.” Renewable Energy 86: 429–440. https://doi.org/10.1016/j.renene.2015.08.035.
Chatzimouratidis, A. I., and P. A. Pilavachi. 2008. “Multicriteria evaluation of power plants impact on the living standard using the analytic hierarchy process.” Energy Policy 36 (3): 1074–1089. https://doi.org/10.1016/j.enpol.2007.11.028.
Defne, Z., K. A. Haas, and H. M. Fritz. 2011. “GIS based multi-criteria assessment of tidal stream power potential: A case study for Georgia, USA.” Renewable Sustainable Energy Rev. 15 (5): 2310–2321. https://doi.org/10.1016/j.rser.2011.02.005.
Ecological Economic Zoning. 2015. “Resolution R.PR- 1/2005.” Accessed July 15, 2015. http://www.zee.mg.gov.br.
Eletrobrás (Centrais Elétricas Brasileiras S.A.). 2000. “Diretrizes para estudos e projetos de pequenas centrais hidrelétricas” [Guidelines for studies and projects of small hydroelectric power plants]. [In Portuguese.] Accessed December 9, 2016. [In Portuguese.] https://www.eletrobras.com/elb/data/Pages/LUMISF99678B3PTBRIE.htm.
EPE (Empresa de Pesquisa Energética). 2012a. “Análise socioambiental integrada” [Integrated social and environmental analysis]. [In Portuguese.] Accessed December 9, 2016. http://www.epe.gov.br/MeioAmbiente/Documents/Estudos%20PDE%202021/20121227_3.pdf.
EPE (Empresa de Pesquisa Energética). 2012b. “Avaliação socioambiental de usinas hidrelétricas” [Socioenvironmental evaluation of hydroelectric power plants]. [In Portuguese.] Accessed December 9, 2016. http://www.epe.gov.br/MeioAmbiente/Documents/Estudos%20PDE%202021/20121227_1.pdf.
Erlewein, A. 2013. “Disappearing rivers—The limits of environmental assessment for hydropower in India.” Environ. Impact Assess. Rev. 43: 135–143. https://doi.org/10.1016/j.eiar.2013.07.002.
Ferreira, J. H. I., J. R. Camacho, J. A. Malagoli, and S. C. Guimarães. 2016. “Assessment of the potential of small hydropower development in Brazil.” Renewable Sustainable Energy Rev. 56: 380–387. https://doi.org/10.1016/j.rser.2015.11.035.
Goodland, R. 2009. “Strategic environmental assessment and the World Bank Group.” Int. J. Sustainable Dev. World Ecol. 12 (3): 245–255. https://doi.org/10.1080/13504500509469635.
Grumbine, R. E., J. Dore, and J. Xu. 2012. “Mekong hydropower: Drivers of change and governance challenges.” Front. Ecol. Environ. 10 (2): 91–98. https://doi.org/10.1890/110146.
Grumbine, R. E., and J. Xu. 2011. “Mekong hydropower development.” Science 332 (6026): 178–179. https://doi.org/10.1126/science.1200990.
Hennig, T., W. Wang, Y. Feng, X. Ou, and D. He. 2013. “Review of Yunnan’s hydropower development. Comparing small and large hydropower projects regarding their environmental implications and socio-economic consequences.” Renewable Sustainable Energy Rev. 27: 585–595. https://doi.org/10.1016/j.rser.2013.07.023.
Klimpt, J. E., C. Rivero, H. Puranen, and F. Koch. 2002. “Recommendations for sustainable hydroelectric development.” Energy Policy 30 (14): 1305–1312. https://doi.org/10.1016/S0301-4215(02)00092-7.
Kosnik, L. 2010. “The potential for small scale hydropower development in the US.” Energy Policy 38 (10): 5512–5519. https://doi.org/10.1016/j.enpol.2010.04.049.
Kumar, D., and S. S. Katoch. 2015. “Sustainability suspense of small hydropower projects: A study from western Himalayan region of India.” Renewable Energy 76: 220–233. https://doi.org/10.1016/j.renene.2014.11.025.
Kusre, B. C., D. C. Baruah, P. K. Bordoloi, and S. C. Patra. 2010. “Assessment of hydropower potential using GIS and hydrological modeling technique in Kopili River Basin in Assam (India).” Appl. Energy 87 (1): 298–309. https://doi.org/10.1016/j.apenergy.2009.07.019.
Larentis, D. G., W. Collischonn, F. Olivera, and C. E. M. Tucci. 2010. “GIS-based procedures for hydropower potential spotting.” Energy 35 (10): 4237–4243. https://doi.org/10.1016/j.energy.2010.07.014.
Malczewski, J. 2000. “On the use of weighted linear combination method in GIS: Common and best practice approaches.” Trans. GIS. 4 (1): 5–22. https://doi.org/10.1111/1467-9671.00035.
Malczewski, J. 2006. “Ordered weighted averaging with fuzzy quantifiers: GIS-based multicriteria evaluation for land-use suitability analysis.” Int. J. Appl. Earth Obs. Geoinf. 8 (4): 270–277. https://doi.org/10.1016/j.jag.2006.01.003.
Martins, D. E. C., M. E. B. Seiffert, and M. Dziedzic. 2013. “The importance of clean development mechanism for small hydro power plants.” Renewable Energy 60: 643–647. https://doi.org/10.1016/j.renene.2013.06.021.
McManamay, R. A., N. Samu, S. C. Kao, M. S. Bevelhimer, and S. C. Hetrick. 2015. “A multi-scale spatial approach to address environmental effects of small hydropower development.” Environ. Manage. 55 (1): 217–243.
Nautiyal, H., S. K. Singal, V. Goel, and A. Sharma. 2011. “Small hydropower for sustainable energy development in India.” Renewable Sustainable Energy Rev. 15 (4): 2021–2027. https://doi.org/10.1016/j.rser.2011.01.006.
Paish, O. 2002. “Small hydro power: Technology and current status.” Accessed December 7, 2016. https://fenix.tecnico.ulisboa.pt/downloadFile/3779572235102/Paper20Small20Hydro20Power.pdf.
Pang, M., L. Zhang, S. Ulgiati, and C. Wang. 2015. “Ecological impacts of small hydropower in China: Insights from an energy analysis of a case plant.” Energy Policy 76: 112–122. https://doi.org/10.1016/j.enpol.2014.10.009.
Perius, M. R., and J. B. Carregaro. 2012. “Pequenas Centrais Hidrelétricas como forma de redução de imapctos ambientais e crises energéticas” [Small hydropower plants as a way to reduce environmental impacts and energy crises]. [In Portuguese.] Ensaios e Ciⓔncia: Ciⓔncias Biológicas, Agrárias e da Saúde. 16 (2): 135–150.
Pinho, P., R. Maia, and A. Monterroso. 2007. “The quality of Portuguese environmental impact studies: The case of small hydropower projects.” Environ. Impact Assess. Rev. 27 (3): 189–205. https://doi.org/10.1016/j.eiar.2006.10.005.
Pohekar, S. D., and M. Ramachandran. 2004. “Application of multi-criteria decision making to sustainable energy planning—A review.” Renewable Sustainable Energy Rev. 8 (4): 365–381. https://doi.org/10.1016/j.rser.2003.12.007.
Prado, F. A., S. Athayde, J. Mossa, S. Bohlman, F. Leite, and A. Oliver-Smith. 2016. “How much is enough? An integrated examination of energy security, economic growth and climate change related to hydropower expansion in Brazil.” Renewable Sustainable Energy Rev. 53: 1132–1136. https://doi.org/10.1016/j.rser.2015.09.050.
Ramachandra, T. V., R. K. Jha, K. S. Vamsee, and B. V. Shruthi. 2004. “Spatial decision support system for assessing micro, mini and small hydel potential.” J. Appl. Sci. 4 (4): 596–604. https://doi.org/10.3923/jas.2004.596.604.
Rodrigues, G. S. S. C., and R. M. Rosa. 2013. “Avaliação Ambiental Estratégica em Minas Gerais e a multiplicação de Pequenas Centrais Hidrelétricas na bacia do rio Uberabinha” [Strategic environmental assessment in state of Minas Gerais and proliferation of small hydropower plant in Uberabinha River Basin]. [In Portuguese.] Boletim de Geografia, Maringá. 31 (3): 125–137. https://doi.org/10.4025/bolgeogr.v31i3.19650.
Rojanamon, P., T. Chaisomphob, and T. Bureekul. 2009. “Application of geographical information system to site selection of small run-of-river hydropower project by considering engineering/economic/environmental criteria and social impact.” Renewable Sustainable Energy Rev. 13 (9): 2336–2348. https://doi.org/10.1016/j.rser.2009.07.003.
Saaty, T. L. 1989. Group decision making and the AHP. New York: Springer.
Sánchez-Lozano, J. M., J. Teruel-Solano, P. L. Soto-Elvira, and M. S. Garcia-Cascales. 2013. “Geographical information systems (GIS) and multi-criteria decision making (MCDM) methods for the evaluation of solar farms locations: Case study in south-eastern Spain.” Renewable Sustainable Energy Rev. 24: 544–556. https://doi.org/10.1016/j.rser.2013.03.019.
Scolforo, J. R. S., A. D. Oliveira, and L. M. Tavares. 2008. Zoneamento ecológico econⓞmico do Estado de Minas Gerais: zoneamento e cenários exploratórios [Economic ecological zoning of the State of Minas Gerais: Zoning and exploratory scenarios]. [In Portuguese.] Lavras, Brazil: Universidade Federal de Lavras.
Sharma, N. K., P. K. Tiwari, and Y. R. Sood. 2013. “A comprehensive analysis of strategies, policies and development of hydropower in India: Special emphasis on small hydro power.” Renewable Sustainable Energy Rev. 18: 460–470. https://doi.org/10.1016/j.rser.2012.10.017.
Silve, E. M., and P. S. Pompeu. 2008. “Análise crítica dos estudos de ictiofauna para o licenciamento ambiental de 40 PCH no estado de Minas Gerais” [Critical analysis of the ichthyofauna studies for the environmental licencing of 40 SHP in Minas Gerais State]. [In Portuguese.] PCH Notícias and SHP News 9 (37): 22–26.
Tahri, M., M. Hakdaoui, and M. Maanan. 2015. “The evaluation of solar farm locations applying geographic information system and multi-criteria decision-making methods: Case study in southern Morocco.” Renewable Sustainable Energy Rev. 51: 1354–1362. https://doi.org/10.1016/j.rser.2015.07.054.
UNEP (United Nations Environment Programme). 2012. “The future we want. Outcome document of the United Nations conference on sustainable development (Rio + 20).” Accessed December 1, 2016. http://www.un.org/en/sustainablefuture.
UN (United Nations). 2012. “Department of Economic and Social Affairs, Population Division (2013) World Population Prospects: The 2012 revision.” Accessed December 1, 2016. http://esa.un.org/wpp/.
Von Sperling, E. 2012. “Hydropower in Brazil: Overview of positive and negative environmental aspects.” Energy Proc. 18: 110–118. https://doi.org/10.1016/j.egypro.2012.05.023.
Wang, S., J. Liu, L. Ren, K. Zhang, and R. Wang. 2009. “The development and practices of strategic environmental assessment in Shandong Province, China.” Environ. Impact Assess. Rev. 29 (6): 408–420. https://doi.org/10.1016/j.eiar.2009.02.005.
WCD (World Commission on Dams). 2000. Dams and development: A new framework for decision making. London: Earthscan Publications.
Winemiller, K. O., et al. 2016. “Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong.” Science 351 (6269): 128–129. https://doi.org/10.1126/science.aac7082.
World Bank. 2014a. “Database world development indicators: Electricity production from hydroelectric sources (kWh).” Accessed November 25, 2016. http://data.worldbank.org/indicator.
World Bank. 2014b. “Database world development indicators: Electricity production from renewable sources, excluding hydroelectric (kWh).” Accessed November 26, 2016. https://data.worldbank.org/indicator/EG.ELC.RNWX.ZS.
Yi, C., J.-H. Lee, and M. Shim. 2010. “Site location analysis for small hydropower using geo-spatial information system.” Renewable Energy 35 (4): 852–861. https://doi.org/10.1016/j.renene.2009.08.003.
Zarfl, C., A. E. Lumsdon, J. Berlekamp, L. Tydecks, and K. Tockner. 2014. “A global boom in hydropower dam construction.” Aquat. Sci. 77 (1): 161–170. https://doi.org/10.1007/s00027-014-0377-0.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 144Issue 7July 2018

History

Received: Dec 20, 2016
Accepted: Dec 11, 2017
Published online: May 9, 2018
Published in print: Jul 1, 2018
Discussion open until: Oct 9, 2018

Permissions

Request permissions for this article.

Authors

Affiliations

Master’s Student, Programa de Pós-graduação em Tecnologias para Desenvolvimento Sustentável, Universidade Federal de São João del-Rei, Campus Alto Paraopeba, Rod. MG 443, Km 7, Ouro Branco, MG 36420-000, Brazil. ORCID: https://orcid.org/0000-0001-8011-2077. Email: [email protected]
Luiz G. M. Silva [email protected]
Adjunct Professor, Programa de Pós-graduação em Tecnologias para Desenvolvimento Sustentável, Universidade Federal de São João del-Rei, Campus Alto Paraopeba, Rod. MG 443, Km 7, Ouro Branco, MG 36420-000, Brazil; Visiting Academic, Institute for Land, Water and Society, Charles Sturt Univ., P.O. Box 789, Albury, NSW 2640, Australia (corresponding author). Email: [email protected]; [email protected]
Lecturer, Institute for Land, Water and Society, Charles Sturt Univ., P.O. Box 789, Albury, NSW 2640, Australia. Email: [email protected]
Rogério A. Picoli [email protected]
Adjunct Professor, Programa de Pós-graduação em Tecnologias para Desenvolvimento Sustentável, Universidade Federal de São João del-Rei, Campus Alto Paraopeba, Rod. MG 443, Km 7, Ouro Branco, MG 36420-000, Brazil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share