Technical Papers
Oct 11, 2017

Sulfide Generation and Clogging during Infiltration of Denitrified Domestic Wastewater through Two Artificially Created Soils

Publication: Journal of Environmental Engineering
Volume 143, Issue 12

Abstract

This study focused on a pilot-scale infiltration of denitrified wastewater through artificially created soils. The hydraulic performance and sulfide production were evaluated to ensure the system’s longevity over the period needed for autotrophic denitrification. Experiments were carried out over a year in two reactors of 200-L capacity. Sandy and sandy loam soils were tested to represent highly permeable (Ks=0.028  cm/s) and permeable (Ks=0.0013  cm/s) soils, respectively. The infiltration of denitrified wastewater at a continuous hydraulic rate (130 and 70  L/m2/day) through these soils did not lead to the production of large amounts of gaseous hydrogen sulfide [[H2S]<2.1 parts per million (ppm)] or aqueous sulfides ([HS+H2S]<0.7  mg/L) sulfides in both feeding influent and effluents of the 200-L reactors. Considering the hydraulic performance, no loss in the infiltration capacity was recorded for the sandy soil, whereas a clogging phenomenon was observed after 37 days for the sandy loam soil. Two factors were responsible for this clogging phenomenon. A fine brown layer, known as a biomat, was formed on the infiltrative surface (IS) of the soil, which led to the formation of iron ochre at the bottom of the reactor. As an ascertainment attributed to the clogging phenomenon faced, sandy soil appeared to be the best choice as it did not contain organic matter, which could lead to the biomat formation and thus to a clogging phenomenon.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors are grateful for the financial and technical support of Premier Tech Aqua, the Natural Sciences and Engineering Research Council of Canada, and Research Funds of Québec Nature and Technology. Mrs. Ginette Bélanger and Mrs. Myriam Chartier are acknowledged for their significant contribution. Sincere thanks are extended to Mrs. Jihen Ben Khaled and Mr. André Ouellet.

References

Abhilash Pandey, B. D., and Natarajan, K. A. (2015). Microbiology for minerals, metals, materials and the environment, CRC Press, Boca Raton, FL.
Anderson, J. L., and Halsey, C. F. (1980). Evaluating soil texture for a house site, Agricultural Extension Service, Univ. of Minnesota, Minneapolis.
Annable, M. D., Teodorescu, M., Hlavinek, P., and Diels, L. (2008). Methods and techniques for cleaning-up contaminated sites, Springer, Dordrecht, Netherlands.
Barton, L., and Hamilton, W. A. (2007). Sulphate-reducing bacteria: Environmental and engineered systems, Cambridge University Press, Cambridge, New York.
Baveye, P., Vandevivere, P., Hoyle, B. L., De Leo, P. C., and de Lozada, D. S. (1998). “Environmental impact and mechanisms of the biological clogging of saturated soils and aquifer materials.” Crit. Rev. Environ. Sci. Technol., 28(2), 123–191.
Beauchamp, R. O., Bus, J. S., Popp, J. A., Boreiko, C. J., Andjelkovich, D. A., and Leber, P. (1984). “A critical review of the literature on hydrogen sulfide toxicity.” Crit. Rev. Toxicol., 13(1), 25–97.
Benedetto, J. S., de Almeida, S. K., Gomes, H. A., Vazoller, R. F., and Ladeira, A. C. Q. (2005). “Monitoring of sulfate-reducing bacteria in acid water from uranium mines.” Miner. Eng., 18(13–14), 1341–1343.
Ben-Khaled, J. (2016). “Couplage de la dénitrification autotrophe sur soufre aux systèmes de traitement biologique des eaux usées domestiques applicables au secteur de l’assainissement décentralisé.” Ph.D. thesis, INRS, Univ. of Québec, Québec (in French).
Bertolacini, R. J., and Barney, J. E. (1957). “Colorimetric determination of sulfate with barium chloranilate.” Anal. Chem. Am. Chem. Soc., 29(2), 281–283.
Biswas, T. (2012). “Effect of linoleic acid and COD/SO42—Ratio on anaerobic sulphate reduction in semi-continuous reactors.” M.Sc. thesis, Univ. of Windsor, Windsor, Canada.
Buchanan, J. R. (2014). “Decentralized wastewater treatment.” Chapter 13, Comprehensive water quality and purification, S. Ahuja, ed., Vol. 3, Elsevier, Calabash, NC.
Canadian Centre for Occupational Health and Safety. (2016). “CHEMINFO database.” Hamilton, ON, Canada.
Cervantes, F. J., Pavlostathis, S., and Van Haandel, A. C. (2006). Advance biological treatment processes for industrial wastewaters: Principles and applications, IWA Publishing, London.
Chou, C. H. S. J. (2003). Hydrogen sulfide, World Health Organization, Geneva.
Christianson, L., Lepine, C., Tsukuda, S., Saito, K., and Summerfelt, S. (2015). “Nitrate removal effectiveness of fluidized sulfur-based autotrophic denitrification biofilters for recirculating aquaculture systems.” Aquacult. Eng., 68, 10–18.
Cline, J. D. (1969). “Spectrophotometric determination of hydrogen sulfide in natural waters.” Limnol. Oceanogr., 14(3), 454–458.
Dar, S. A., Kleerebezem, R., Stams, A. J. M., Kuenen, J. G., and Muyzer, G. (2008). “Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio.” Appl. Microbiol. Biotechnol., 78(6), 1045–1055.
Deepa, K., and Krishnaveni, M. (2012). “Water quality performance of soil aquifer treatment (SAT) using municipal treated wastewater of Chennai City, India.” J. Environ. Hydrol., 20(2), 1–9.
Down, R. D., and Lehr, J. H. (2005). Environmental instrumentation and analysis handbook, Wiley, Hoboken, NJ.
Erickson, T. E. J. (2000). “Soil oxygen delivery to wastewater infiltration surfaces.” Proc., National Onsite Wastewater Recycle Association, Arlington, VA, 91–96.
Ford, H. W. (1985). Iron ochre and related sludge deposits in subsurface drain lines, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, Univ. of Florida, Gainesville, FL.
Ghorbel, L., Coudert, L., Gilbert, Y., Mercier, G., and Blais, J. F. (2016). “Assessment of sulfide production risk in soil during the infiltration of domestic wastewater treated by a sulfur-utilizing denitrification process.” Environ. Sci. Pollut. Res., 23(19), 19071–19083.
Glass, D. C. (1990). “A review of the health effects of hydrogen sulphide explosure.” Ann. Occup. Hyg., 34(3), 323–327.
Gouvernement du Québec. (2015). Règlement sur l’évacuation et le traitement des eaux usées des résidences isolées, Québec.
Government of Canada. (2015). “Rapport de données quotidiennes Rivière-du-Loup.” Canada.
Gutierrez, O., Park, D., Sharma, K. R., and Yuan, Z. (2009). “Effects of long-term pH elevation on the sulfate-reducing and methanogenic activities of anaerobic sewer biofilms.” Water Res., 43(9), 2549–2557.
Hargett, D. L., Tyler, E. J., Siegrist, R. L., and Project, S. S. W. M. (1981). Soil infiltration capacity as affected by septic tank effluent application strategies, Small Scale Waste Management Project, Univ. of Wisconsin, Madison, WI, 13.
Holland, H. D., and Turekian, K. K. (2010). Isotope geochemistry a derivative of the treatise on geochemistry, Elsevier, Burlington, MA.
Huan, N. H., Hai, Y., and Tuan, N. N. (2013). “Factors effect to the sulfide generation rate in the to Lich River, Vietnam.” ARPN J. Eng. Appl. Sci., 8(3), 190–199.
James, C. N., Copeland, R., and Lytle, D. A. (2004). “Relationships between oxidation-reduction potential, oxidant, and pH in drinking water.” Proc., AWWA WATER Quality Technology Conf., U.S. Environmental Protection Agency, Washington, DC.
Kimura, K., Nakamura, M., and Watanabe, Y. (2002). “Nitrate removal by a combination of elemental sulfur-based denitrification and membrane filtration.” Water Res., 36(7), 1758–1766.
Lens, P. N. L., and Hulshoff Pol, L. (2004). Environmental technologies to treat sulfur pollution: Principles and engineering, IWA Publishing, London, 550.
Liang, C. C. V. (2008). “Reduced sulphur compounds in ambient air and in emissions from wastewater clarifiers at a kraft pulp mill.” Ph.D. thesis, Univ. of Toronto, Toronto, 245.
Lindbo, D. L., Amoozegar, A., Anderson, D., Roy, L. V., Jr., and Vepraskas, M. J. (2014). Understanding and interpreting oxyaquic conditions, innovation in soil-based onsite wastewater treatment, Soil Science Society of America, Albuquerque, NM.
Liu, Z. H., Maszenan, A. M., Liu, Y., and Ng, W. J. (2015). “A brief review on possible approaches towards controlling sulfate-reducing bacteria (SRB) in wastewater treatment systems.” Desalin. Water Treat., 53(10), 2799–2807.
Longpré-Girard, M., Martel, R., Robert, T., Lefebvre, R., and Lauzon, J. M. (2016). “2D sandbox experiments of surfactant foams for mobility control and enhanced LNAPL recovery in layered soils.” J. Contam. Hydrol., 193, 63–73.
Lowe, K., and Siegrist, R. (2008). “Controlled field experiment for performance evaluation of septic tank effluent treatment during soil infiltration.” J. Environ. Eng., 93–101.
Martel, R., and Gélinas, P. J. (1996). “Surfactant solutions developed for NAPL recovery in contaminated aquifers.” Groundwater, 34(1), 143–154.
McKinley, J. W., and Siegrist, R. L. (2011). “Soil clogging genesis in soil treatment units used for onsite wastewater reclamation: A review.” Crit. Rev. Environ. Sci. Technol., 41(24), 2186–2209.
MDDEFP (Ministère du Développement Durable, de l’Environnement, de la Faune et des Parcs). (2013). “Étude d’impact économique du projet de règlement modifiant le règlement sur l’évacuation et le traitement des eaux usées des résidences isolées.” Québec (in French).
MDDEFP (Ministère du Développement Durable, de l’Environnement, de la Faune et des Parcs). (2014). “Détermination de la demande chimique en oxygène: Méthode de reflux en système fermé suivi d’un dosage par colorimétrie avec le bichromate de potassium, MA. 315– DCO 1.1, Rév. 3.” Québec (in French).
MDDELCC (Ministry of Sustainable Development, Environment, and Action against Climate Change). (2015). “Règlement sur l’évacuation et le traitement des eaux usées des résidences isolées.” Government of Québec, Québec (in French).
Musy, A., and Soutter, M. (1991). “Physique du sol.” Presses polytechniques et universitaires romandes, Lavoisier, Paris (in French).
Nielsen, P. H., Raunkjær, K., and Hvitved-Jacobsen, T. (1998). “Sulfide production and wastewater quality in pressure mains.” Water Sci. Technol., 37(1), 97–104.
Partlo, L. A., Sainsbury, R. S., and Roth, S. H. (2001). “Effects of repeated hydrogen sulphide (H2S) exposure on learning and memory in the adult rat.” NeuroToxicology, 22(2), 177–189.
PTA (Premier Tech Aqua). (2015). “PremierTech.” ⟨http://www.premiertechaqua.com/assainissement-traitement-eaux-usees⟩ (Mar. 17, 2015).
Reddy, K. R., and DeLaune, R. D. (2008). Biogeochemistry of wetlands: Science and applications, CRC Press, Boca Raton, FL.
Reiffenstein, R. J., Hulbert, W. C., and Roth, S. H. (1992). “Toxicology of hydrogen sulfide.” Ann. Rev. Pharmacol. Toxicol., 32(1), 109–134.
Sandhu, C., Fichtner, T., Hasan, I., and Gräber, P. W. (2013). “Predicting the impact of treated wastewater infiltration on groundwater recharge by simulating reactive transport in the unsaturated zone.” Proc., HYDRUS Workshop, Czech Univ. of Life Sciences, Prague, Czech Republic.
Service Des Eaux Municipales. (2007). Traitement des eaux usées des résidences isolées guide technique, Direction des politiques de l’eau, Ministère du développement durable, de l’environnement et des parcs, Québec (in French).
Shan, J., and Zhang, T. C. (1998). “Septic tank effluent denitrification with sulfur/limestone processes.” Proc., Conf. on Hazardous Waste Research, Snowbird, UT, 15.
Siegrist, R. L., and Thresher, J. E. (1985). “Microanalysis of wastewater amended vadose zone soils.” Proc., Conf. on Characterization and Monitoring of the Vadose (Unsaturated) Zone, National Water Well Association, Worthington, OH, 373–381.
Sierra-Alvarez, R., Beristain-Cardoso, R., Salazar, M., Gómez, J., Razo-Flores, E., and Field, J. A. (2007). “Chemolithotrophic denitrification with elemental sulfur for groundwater treatment.” Water Res., 41(6), 1253–1262.
Simard, M., Masson, S., Mercier, G., Benmoussa, H., Blais, J., and Coudert, L. (2015). “Autotrophic denitrification using elemental sulfur to remove nitrate from saline aquarium waters.” J. Environ. Eng., 04015037.
Smart, P., and Herbertson, J. G. (1992). Drainage design, Blackie, Glasgow, U.K.
Soares, M. I. M. (2002). “Denitrification of groundwater with elemental sulfur.” Water Res., 36(5), 1392–1395.
Statistics Canada. (2011). Households and the environment, Statistics Canada and Ministry of Industry, Ottawa.
Van der Hoek, J. P., Kappelhof, J. W. N. M., and Hijnen, W. A. M. (1992). “Biological nitrate removal from ground water by sulfur/limestone denitrification.” J. Chem. Technol. Biotechnol., 54(2), 197–200.
Velasco, A., Ramírez, M., Volke-Sepúlveda, T., González-Sánchez, A., and Revah, S. (2008). “Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation.” J. Hazard. Mater., 151(2–3), 407–413.
White, K. D., and West, L. T. (2003). “In-ground dispersal of wastewater effluent: The science of getting water into the ground.” Small Flows Q., 4, 28–35.
Winstanley, H. F., and Fowler, A. C. (2013). “Biomat development in soil treatment units for on-site wastewater treatment.” Bull. Math. Biol., 75(10), 1985–2001.
Xu, Y., Chen, N., Feng, C., Hao, C., and Peng, T. (2016). “Sulfur-based autotrophic denitrification with eggshell for nitrate-contaminated synthetic groundwater treatment.” Environ. Technol., 37(24), 3094–3103.
Yeh, E. (2000). “Raw sludge as substrate for sulphate-reducing bacteria.” Ph.D. thesis, Univ. of Toronto, Toronto.
Yuan, H., Nie, J., Zhu, N., Miao, C., and Lu, N. (2013). “Effect of temperature on the wastewater treatment of a novel anti-clogging soil infiltration system.” Ecol. Eng., 57, 375–379.
Zhang, T. C., and Shan, J. (1999). “In situ septic tank effluent denitrification using a sulfur-limestone process.” Water Environ. Res., 71(7), 1283–1291.
Zhou, W., et al. (2011). “Autotrophic denitrification for nitrate and nitrite removal using sulfur-limestone.” J. Environ. Sci., 23(11), 1761–1769.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 143Issue 12December 2017

History

Received: Sep 20, 2016
Accepted: May 31, 2017
Published online: Oct 11, 2017
Published in print: Dec 1, 2017
Discussion open until: Mar 11, 2018

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement, Université du Québec, 490 Rue de la Couronne, Québec, QC, Canada G1K 9A9. E-mail: [email protected]
Research Associate, Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement, Université du Québec, 490 Rue de la Couronne, Québec, QC, Canada G1K 9A9. E-mail: [email protected]
Project Manager, Premier Tech, 1 Ave. Premier Campus Premier Tech, Rivière-du-Loup, QC, Canada G5R 6C1. E-mail: [email protected]
Professor, Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement, Université du Québec, 490 Rue de la Couronne, Québec, QC, Canada, G1K 9A9. E-mail: [email protected]
J. F. Blais, M.ASCE [email protected]
Professor, Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement, Université du Québec, 490 Rue de la Couronne, Québec, QC, Canada G1K 9A9 (corresponding author). E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share