Abstract

Ganoderma lucidum’s potential to decolorize and detoxify malachite green (MG) was studied. A Plackett-Burman experimental design to select operational factors and conditions favoring decolorization associated with laccase activity was performed. The most influential variables based on this statistical optimization were temperature, rpm for flask agitation, inoculum percentage, and dye concentration. Based on these features, removal experiments for 96 h were performed. Following thr 96-h removal assays, it was demonstrated that viable biomass at different glucose concentrations was able to remove over 90% MG at a 10  mg/L concentration, evidencing a positive correlation with laccase activity. Adsoprtion studies allowed to evidence acid pHs favored MG adsorption, with the Elovich model best describing the chimioadsorption phenomenon. Finally, it was demonstrated that MG (10  mgL1) without treatment was highly toxic for Lactuca sativa seed germination index (GI) (<50%). This index increased when seeds were exposed to MG solution after it was treated with G. lucidum viable biomass (VB).

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This research was funded by the following grants: Project ID: 00004334 (Expresión a escala de laboratorio de las lacasas recombinantes de Pleurotus ostreatus y Ganoderma lucidum), and Project ID: 00004335 (Evaluación de Ganoderma lucidum, Pleurotus ostreatus y fotocatálisis con TiO2/CuSO4 para la remoción de colorantes trifenilmetánicos), Pontificia Universidad Javeriana, Bogotá, D.C. Colombia, Grupo de Biotecnología Ambiental e Industrial (GBAI). The authors thank Fiona Raikes and María Lucía Gutiérrez for their English editing.

References

Boh, B., Berovic, M., Zhang, J., and Zhi-Bin, L. (2007). “Ganoderma lucidum and its pharmaceutically active compounds.” Biotechnol. Ann. Rev., 13, 265–301.
Casas, N., Parella, T., Vicent, T., Caminal, G., and Sarrà, M. (2009). “Metabolites from the biodegradation of triphenylmethane dyes by Trametes versicolor or laccase.” Chemosphere, 75(10), 1344–1349.
Chaturvedi, V., et al. (2013). “Biodetoxification of high amounts of malachite green by a multifunctional strain of Pseudomonas mendocina and its ability to metabolize dye adsorbed chicken feathers.” J. Environ. Chem. Eng., 1(4), 1205–1213.
Cheng, W., et al. (2008). “Removal of malachite green (MG) from aqueous solutions by native and heat-treated anaerobic granular sludge.” Biochem. Eng. J., 39(3), 538–546.
Chergui, A., Kerbachi, R., and Junter, G. A. (2009). “Biosorption of hexacyanoferrate (III) complex anion to dead biomass of the basidiomycete Pleurotus mutilus: Biosorbent characterization and batch experiments.” Chem. Eng. J., 147(2–3), 150–160.
Chowdhury, S., Chakraborty, S., and Saha, P. (2011). “Biosorption of basic green 4 from aqueous solution by Ananas comosus (pineapple) leaf powder.” Coll. Surf. B., 84(2), 520–527.
Daâssi, D., Mechichi, T., Nasri, M., and Rodriguez-Couto, S. (2013). “Decolorization of the metal textile dye Lanaset Grey G by immobilized white-rot fungi.” J. Environ. Manage., 129, 324–332.
Design Expert 9.0.6.2 [Computer software]. Stat-Ease, Minneapolis.
Fernández, J. A., Henao, L. M., Pedroza-Rodríguez, A. M., and Quevedo-Hidalgo, B. (2009). “Inmovilización de hongos ligninolíticos para la remoción del colorante negro reactivo 5.” Rev. Colomb. Biotenología, 11(1), 59–72 (in Spanish).
Gessner, T., and Mayer, U. (2001). “Triarylmethane and diarylmethane dyes.” Ullmann’s encyclopedia of industrial chemistry part A27, Wiley, New York.
Grassi, E., Scodeller, P., Filiel, N., Carballo, R., and Levin, L. (2011). “Potential of Trametes trogii culture fluids and its purified laccase for the decolorization of different types of recalcitrant dyes without the addition of redox mediators.” Int. Biodeterior. Biodegrad., 65(4), 635–643.
Jang, G. H., Park, I. S., Lee, S. H., Huh, T. L., and Lee, Y. M. (2009). “Malachite green induces cardiovascular defects in developing zebrafish (Danio rerio) embryos by blocking VEGFR-2 signaling.” Biochem. Biophys. Res. Commun., 382(3), 486–491.
Jasinska, A., Rózalska, S., Bernat, P., Paraszkiewicz, K., and Dlugonski, J. (2012). “Malachite green decolorization by non-basidiomycete filamentous fungi of Penicillium pinophilum and Myrothecium roridum.” Int. Biodeterior. Biodegrad., 73, 33–40.
Kim, H. M., Paik, S. Y., Soo Ra, K., Bon Koo, K., Won Yun, J., and Won Choi, J. (2006). “Enhanced production of exopolysaccharides by fed-batch culture of Ganoderma resinaceum DG-6556.” J. Microbiol., 44(2), 233–242.
Kuhar, F., and Papinutti, L. (2013). “Protective effect of vanilloids against chemical stress on the white-rot fungus Ganoderma lucidum.” J. Environ. Manage., 124, 1–7.
Kumar, R., and Ahmad, R. (2011). “Biosorption of hazardous crystal violet dye from aqueous solution onto treated ginger waste (TGW).” Desalination, 265(1–3), 112–118.
Lin, Y., He, X., Han, G., Tian, Q., and Hu, W. (2011). “Removal of crystal violet from aqueous solution using powdered mycelial biomass of Ceriporia lacerata P2.” J. Environ. Sci., 23(12), 2055–2062.
Ma, L., et al. (2014). “Efficient decolorization and detoxification of the sulfonated azo dye reactive orange 16 and simulated textile wastewater containing reactive orange 16 by the white-rot fungus Ganoderma sp. En3 isolated from the forest of Tzu-Chin Mountain in China.” Biochem. Eng. J., 82, 1–9.
Mahamadi, C., and Mawere, E. (2013). “Kinetic modeling of methylene blue and crystal violet dyes desorption on alginate-fixed water hyacinth in single and binary systems.” Am. J. Anal. Chem., 4(10C), 17–24.
Miller, G. (1959). “Use of dinitrosalicilic acid reagent for determination of reducing sugar.” Anal. Chem., 31(3), 426–428.
Morales-Fonseca, D., et al. (2010). “Desarrollo de un bioadsorbente laminar con Phanerochaete chrysosporium hipertolerante al cadmio, al níquel y al plomo para el tratamiento de aguas.” Rev. Iberoam. de Micología, 27(3), 111–118 (in Spanish).
Murugesan, K., Yang, I. H., Kim, Y. M., Jeon, J. R., and Chang, Y. S. (2009). “Enhanced transformation of malachite green by laccase of Ganoderma lucidum in the presence of natural phenolic compounds.” Appl. Microbiol. Biotechnol., 82(2), 341–350.
Oladoja, N. A., Aboluwoye, C. O., and Oladimeji, Y. B. (2008). “Kinetics and isotherm studies on methylene blue adsorption onto ground palm kernel coat.” Turk. J. Eng. Environ. Sci., 32(5), 303–312.
Pedroza-Rodríguez, A. M., and Rodríguez-Vázquez, R. (2013). “Optimization of C/N ratio and inducers for wastewater paper industry treatment using Trametes versicolor immobilized in bubble column reactor.” J. Micol., 11.
Radha, K. V., Regupathi, I., Arunagiri, A., and Murugesan, T. (2005). “Decolorization studies of synthetic dyes using Phanerchaete chrysosporium and their kinetics.” Process. Biochem., 40(10), 3337–3345.
Rivera-Hoyos, C. M., Morales-Álvarez, E. D., Poutou-Piñales, R. A., Pedroza-Rodríguez, A. M., Rodríguez-Vázquez, R., and Delgado-Boada, J. M. (2013). “Fungal laccases” Fungal Biol. Rev., 27(3-4), 67–82.
Sahmoune, M. N., and Ouazene, N. (2012). “Mass-transfer processes in the adsorption of cationic dye by sawdust.” Environ. Prog. Sustainable Energy, 31(4), 597–603.
Sarkar, A. K., Pal, A., Ghorai, S., Mandre, N. R., and Pal, S. (2014). “Efficient removal of malachite green dye using biodegradable graftcopolymer derived from amylopectin and poly (acrylic acid).” Carbohydr. Polym., 111, 108–115.
SAS 9.0 [Computer software]. SAS Institute, Cary, NC.
Tinoco, R., Pickard, M. A., and Vazquez-Duhalt, R. (2001). “Kinetic differences of purified laccases from six Pleurotus ostreatus strains.” Lett. Appl. Microbiol., 32(5), 331–335.
Wang, J. A., et al. (2012). “Pathway and molecular mechanisms for malachite green biodegradation in Exiguobacterium sp. MG2.” Plos One, 7(12), .
Yan, J., Niu, J., Chen, D., Chen, Y., and Irbis, C. (2014). “Screening of Trametes strains for efficient decolorization of malachite green at high temperatures and ionic concentrations.” Int. Biodeterior. Biodegrad., 87, 109–115.
Yang, J., Yang, X., Lin, Y., Ng, T. B., Lin, J., and Ye, X. (2015). “Laccase-catalyzed decolorization of malachite green: Performance optimization and degradation mechanism.” Plos One, 10(5), .
Yuan, B., Chi, X., and Zhang, R. (2012). “Optimization of exopolysaccharides production from a novel strain of Ganoderma lucidum CAU5501 in submerged culture.” Braz. J. Microbiol., 43(2), 490–497.
Zhuo, R., et al. (2011). “Decolorization of different dyes by a newly isolated white-rot fungi strain Ganoderma sp. En3 and cloning and functional analysis of its laccase gene.” J. Hazard. Mater., 192(2), 855–873.
Zilly, A., et al. (2011). “Influence of NaCl and Na2SO4 on the kinetics and dye decolorization ability of crude laccase from Ganoderma lucidum.” Int. Biodeterior. Biodegrad., 65(2), 340–344.
Zucconi, F., Monaco, A., Forte, M., and De Bertoldi, M. (1985). “Phytotoxins during the stabilization of organic matter.” Composting of agricultural and other wastes, J. K. R. Gasser, ed., Elsevier, London.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 143Issue 4April 2017

History

Received: Feb 22, 2015
Accepted: Sep 6, 2016
Published online: Dec 8, 2016
Published in print: Apr 1, 2017
Discussion open until: May 8, 2017

Permissions

Request permissions for this article.

Authors

Affiliations

Edwin D. Morales-Álvarez [email protected]
Ph.D. Student, Laboratorio de Microbiología Ambiental y de Suelos, Grupo de Biotecnología Ambiental e Industrial, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidade Javeriana, Bogotá, D.C., Colombia; Assistant Professor, Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidade de Caldas, PC 110-23, Manizales-Caldas, Colombia. E-mail: [email protected]
Claudia M. Rivera-Hoyos, Ph.D. [email protected]
Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidade Javeriana, PC 110-23, Bogotá, D.C., Colombia. E-mail: [email protected]
Laura E. Chaparro-Núñez [email protected]
Research Asistant, Laboratorio de Microbiología Ambiental y de Suelos, Grupo de Biotecnología Ambiental e Industrial, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidade Javeriana, PC 110-23, Bogotá, D.C., Colombia. E-mail: [email protected]
Carlos E. Daza, Ph.D. [email protected]
Associate Professor, Departamento de Química, Facultad de Ciencias, Universidade Nacional de Colombia, PC 110-23, Bogotá, D.C., Colombia. E-mail: [email protected]
Raúl A. Poutou-Piñales, Ph.D. [email protected]
Professor, Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidade Javeriana, PC 110-23, Bogotá, D.C., Colombia. E-mail: [email protected]
Aura M. Pedroza-Rodríguez, Ph.D. [email protected]
Associate Professor, Laboratorio de Microbiología Ambiental y de Suelos, Grupo de Biotecnología Ambiental e Industrial, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidade Javeriana, Carrera 7ma No 43-82, Edifício 50 Laboratorio 106, Bogotá, D.C., 110-23, Colombia (corresponding author). E-mail: [email protected]; [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share