TECHNICAL PAPERS
Nov 24, 2010

Photoelectrocatalytic Wastewater Treatment Using TiO2/ITO Bilayers Prepared on Optical Fibers by Pulsed Laser Deposition

Publication: Journal of Environmental Engineering
Volume 137, Issue 5

Abstract

Advanced oxidation processes (AOPs), on the basis of photoelectrochemical reactions, constitute a good alternative for treating wastewaters contaminated with refractory organic compounds such as dyes. For this purpose, different approaches have been explored to develop novel photoanodes that can be efficiently used in these systems. In this context, this study deals with a comparison of indium tin oxide (ITO) thin films deposited at room temperature by pulsed laser deposition on flat glass and on silica optical fiber (SiO2 core, 600 µm diameter) substrates. Characterization data reveal that nanostructured ITO thin films with resistivity values from 4.4×10-2 to 5.6×10-4Ω·cm were obtained. To build the photoanode, the ITO thin films were coated with a TiO2 layer deposited by using the electrophoretic method. The prepared TiO2/ITO bilayers on optical fibers showed a better photocatalytic performance than those deposited on flat glass substrates according to TOC and color removal measurements from dye contaminated water samples. These results suggest that the deposited materials exhibit suitable properties for their application in photoelectrocatalytic devices that, employing optical fiber as support and light transmitter, can be efficiently used for the elimination of organic contaminants in industrial wastewaters.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The writers thank the Mexican Council for Science and Technology (CONACyT, Grant no. UNSPECIFIEDSEP-CONACYT 83894) for financial support of this work. K.E.E. also acknowledges CONACyT for a graduate fellowship.

References

Agnihotry, S. A., Saini, K. K., Saxena, T. K., Nagpal, K. C., and Chandra, S. (1985). “Studies on e-beam deposited transparent conductive films of In2O3; Sn at moderate substrate temperatures.” J. Phys. D, 18, 2087–2096.
Aswal, D. K., and Gupta., S. K. (2006). Science and technology of chemiresistor gas sensors, Nova Publishers, New York, 128–132.
Beena, D., Lethy, K. J., Vinodkumar, R., and MahadevanPillai, V. P. (2007). “Influence of substrate temperature on the properties of laser ablated indium tin oxide films.” Sol. Energy Mater. Sol. Cells, 91(15–16), 1438–1443.
Chiou, B.-S., and Tsai, J.-H. (1999). “Antireflecting coating for ITO films deposited on glass substrate.” J. Mater. Sci. Mater. Electron., 10(7), 491–495.
Choi, J. B., Kim, J. H., Jeon, K. A., and Lee, S. Y. (2003). “Properties of ITO films on glass fabricated by pulsed laser deposition.” Mater. Sci. Eng. B, 102(1–3), 376–379.
Danion, A., Disdier, J., Guillard, C., Abdelmalek, F., and Jaffrezic-Renault, N. (2004). “Characterization and study of a single-TiO2-coated optical fiber reactor.” Appl. Catal., B, 52(3), 213–223.
Danion, A., Disdier, J., Guillard, C., and Jaffrezic-Renault, N. (2007). “Malic acid photocatalytic degradation using a TiO2-coated optical fiber reactor.” J. Photochem. Photobiol., A, 190(1), 135–140.
Elangovan, E., and Ramamurthi, K. (2003). “Effect of substrate temperature on electrical and optical properties of spray deposited SnO2Sb thin films.” J. Optoelectron. Adv. Mater., 5(2), 415–420.
Esquivel, K., Arriaga, L. G., Rodriguez, F. J., Martínez, L., and Godínez, L. A. (2009). “Development of a TiO2 modified optical fiber electrode and its incorporation into a photoelectrochemical reactor for wastewater treatment.” Water Res., 43(14), 3593–3603.
Fachun, L., Limei, L., Rongquan, G., Yongzhong, L., and Zhigao, H. (2007). “Determination of optical constants and thicknesses of In2O3Sn films from transmittance data.” Thin Solid Films, 515(18), 7387–7392.
Goodman., A. M. (1978). “Optical interference method for the approximate determination of refractive index and thickness of a transparent layer.” Appl. Opt., 17(17), 2779–2787.
Guido, D., Cultrera, L., and Perrone, A. (2004). “The pulsed laser ablation deposition techniques: A new deposition configuration for the synthesis of uniform films.” Surf. Coat. Technol., 180–181, 603–606.
Johnson, D. C., Feng, J., and Houk, L. L. (2000). “Direct electrochemical degradation or organic wastes in aqueous media.” Electrochim. Acta, 46(2–3), 323–330.
Kaneko, E. (1987). Liquid crystal displays, KTK Science Publishers, Tokyo.
Khodorov, A., Piechowiak, M., and Gomes, M. J. M. (2007). “Structural, electrical and optical properties of indium-tin-oxide thin films prepared by pulsed laser deposition.” Thin Solid Films, 515(20–21), 7829–7833.
Kim, H., et al. (2000). “Effect of film thickness on the properties of indium tin oxide thin films.” J. Appl. Phys., 88(10), 6021–6025.
Kim, J. H., Jeon, K. A., Kim, G. H., and Lee, S. Y. (2006). “Electrical, structural and optical properties of ITO thin films prepared at room temperature by pulsed laser deposition.” Appl. Surf. Sci., 252(13), 4834–4837.
Kulkarni, A. K., Schulz, K. H., Lim, T. S., and Khan, M. (1999). “Dependence of the sheet resistance of indium-tin-oxide thin films on grain orientation determined from X-ray diffraction techniques.” Thin Solid Films, 345(2), 273–277.
Li, X. Z., Liu, H. L., Yue, P. T., and Sun, Y. P. (2000). “Photoelectrocatalytic oxidation of rose bengal in aqueous solution using Ti/TiO2 mesh electrode.” Environ. Sci. Technol., 34(20), 4401–4406.
López, C., Valade, A.-G., Combourieu, B., Mielgo, I., Bouchon, B., and Lema, J. M. (2004). “Mechanism of enzymatic degradation of the azo dye orange II determined by ex situ H1 nuclear magnetic resonance and electrospray ionization-ion trap mass spectrometry.” Anal. Biochem., 335(1), 135–149.
Manriquez, J., and Godínez, L. A. (2007). “Tuning the structural, electrical and optical properties of Ti(III)-doped nanocrystalline TiO2 films by electrophoretic deposition time.” Thin Solid Films, 515(7–8), 3402–3413.
Martínez-Huitle, C. A., and Brillas, E. (2009). “Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review.” Appl. Catal., B, 87, 105–145.
Mollah, M. Y. A., et al. (2004). “Treatment of orange II azo-dye by electrocoagulation (EC) technique in a continuous flow cell using sacrificial iron electrodes.” J. Hazard. Mater., 109(1–3), 165–171.
Moore, E., O’Connell, D., and Galvin, P. (2006). “Surface characterization of indium-tin oxide thin electrode films for use as a conducting substrate in DNA sensor development.” Thin Solid Films, 515(4), 2612–2617.
Ngaffo, F., Caricato, A. P., Fernandez, M., Martino, M., and Romano, F. (2007). “Structural properties of single and multilayer ITO and TiO2 films deposited by reactive pulsed laser ablation deposition technique.” Appl. Surf. Sci., 253(15), 6508–6511.
Nisha, M., Anusha, S., Antony, A., Manoj, R., and Jayaraj, M. K. (2005). “Effect of substrate temperature on the growth of ITO thin films.” Appl. Surf. Sci., 252(5), 1430–1435.
Peill, N. J., and Hoffmann, M. R. (1995). “Development and optimization of a TiO2-coated fiber-optic cable reactor: Photocatalytic degradation of 4-chlorophenol.” Environ. Sci. Technol., 29(12), 2974–2961.
Peralta-Hernández, J. M., et al. (2007). “Photocatalytic properties of nano-structured TiO2 carbon films obtained by means of electrophoretic deposition.” J. Hazard. Mater., 147(1–2), 588–593.
Prem, N., Bunshah, R. F., Basol, B. M., and Staffsud, O. M. (1980). “Electrical and optical properties of In2O3Sn films prepared by activated reactive evaporation.” Thin Solid Films, 72(3), 463–468.
Raoufi, D., Kiasatpour, A., Fallah, H. R., and Hassan-Rozatian, A. S. (2007). “Surface characterization and microstructure of ITO thin films at different annealing temperatures.” Appl. Surf. Sci., 253(23), 9085–9090.
Rogozin, A., Vinnichenko, M., Shevchenko, N., Kolitsch, A., and Möller, W. (2006). “Plasma influence on the properties and structure of indium tin oxide films produced by reactive middle frequency pulsed magnetron sputtering.” Thin Solid Films, 496(2), 197–204.
Tauc, J., Grigorovici, R., and Vancu, A. (1966). “Optical properties and electronic structure of amorphous germanium.” Phys. Status Solidi B, 15(2), 627–637.
Viespe, C., Nicolae, I., Sima, C., Grigoriu, C., and Medianu, R. (2007). “ITO thin films deposited by advanced pulsed laser deposition.” Thin Solid Films, 515(24), 8771–8775.
Vinodgopal, K., Hotchandani, S., and Kamat, P. V. (1993). “Electrochemically assisted photocatalysis: Titania particulate film electrodes for photocatalytic degradation of 4-clorophenol.” J. Phys. Chem., 97(35), 9040–9044.
Wang, W., and Ku, Y. (2003). “The light transmission and distribution in an optical fiber coated with TiO2 particles.” Chemosphere, 50(8), 999–1006.
Wu, W. F., and Chiou, B. S. (1997a). “Mechanical and optical properties of ITO films with anti-reflective and anti-wear coatings.” Appl. Surf. Sci., 115(1), 96–102.
Wu, W. F., and Chiou, B. S. (1997b). “Deposition of indium tin oxide films on polycarbonate substrates by radio-frequency magnetron sputtering.” Thin Solid Films, 298(1–2), 221–227.
Yong, T. Y., Tou, T. Y., Yow, H. K., and Sáfrán, G. (2008). “Pulsed Nd:YAG laser deposition of indium tin oxide thin films in different gases and organic light emitting device applications.” Thin Solid Films, 516(12), 4267–4271.
Yong, T. K., Yap, S. S., György, Sáfrán, and Tou, T. Y. (2007). “Pulsed Nd:YAG laser of ITO and DLC films for OLED applications.” Appl. Surf. Sci., 253(11), 4955–4959.
Zhang, W., et al. (2003). “Photoelectrocatalytic degradation of reactive brilliant orange K-R in a new continuous flow photoelectrocatalytic reactor.” Appl. Catal., A, 255(2), 221–229.
Zhang, X., Wu, W., Tian, T., Man, Y., and Wang, J. (2008). “Deposition of transparent conductive mesoporous indium tin oxide thin films by a dip coating.” Mater. Res. Bull., 43(4), 1016–1022.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 137Issue 5May 2011
Pages: 355 - 362

History

Received: Jan 8, 2010
Accepted: Nov 23, 2010
Published online: Nov 24, 2010
Published in print: May 1, 2011

Permissions

Request permissions for this article.

Authors

Affiliations

K. Esquivel
Ph.D. Professor, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas, C.P. 76010, Querétaro, Mexico; formerly, Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro Sanfandila, Pedro Escobedo, C.P. 76703, Querétaro, Mexico.
F. J. Rodríguez
Ph.D. Professor, Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro Sanfandila, Pedro Escobedo, C.P. 76703, Querétaro, Mexico.
L. G. Arriaga
Ph.D. Professor, Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro Sanfandila, Pedro Escobedo, C.P. 76703, Querétaro, Mexico.
Enrique Camps
Ph.D. Professor, Dept. de Física, Instituto Nacional de Investigaciones Nucleares. Carr. México-Toluca km 36.5, Ocoyoacac, C.P. 52750, Edo. México, Mexico.
A. Durán-Moreno
Ph.D. Professor, Dept. de Ingeniería Química, Facultad de Química, UNAM, Ciudad Univ., C.P. 04510, México City, Mexico.
L. Escobar-Alarcón [email protected]
Ph.D. Professor, Dept. de Física, Instituto Nacional de Investigaciones Nucleares. Carr. México-Toluca km 36.5, Ocoyoacac, C.P. 52750, Edo. México, Mexico. E-mail: [email protected]
Luis A. Godínez [email protected]
Ph.D. Professor, Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro Sanfandila, Pedro Escobedo, C.P. 76703, Querétaro, Mexico (corresponding author). E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share