Technical Papers
Feb 28, 2022

B-EagleV: Visualization of Big Point Cloud Datasets in Civil Engineering Using a Distributed Computing Solution

Publication: Journal of Computing in Civil Engineering
Volume 36, Issue 3

Abstract

Point cloud data (PCD) have attracted attention in many disciplines, including civil engineering. However, big PCD have posed great challenges for conventional approaches using a single computer. Although many published studies have demonstrated distributed computing’s potential for large-scale data-intensive applications, this technology has not been applied widely in processing of big PCD due to a lack of methods for data management, visualization, and analysis. To strengthen the foundation of distributed computation in civil engineering, this study offers a solution to one of the obstacles presented in the previous studies, which was the visualization of big PCD. The practical result of this study is the introduction of B-EagleV, a cost-effective Hadoop-based solution for the visualization of big PCD in civil engineering with almost complete components of scalable storage, high-performance rendering, and interactive visualization. Through experiment results and demonstration, B-EagleV showed great promise for data management, progress monitoring, and survey conduction in the construction sector.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some data used during the study are available in a repository online in accordance with funder data retention policies (City of Melbourne Open Data Team 2018).

Acknowledgments

This work was supported by a National Research Foundation of Korea (NRF) grant (No. 2018R1A2B2009160) funded by the Korean government (Ministry of Science and ICT).

References

Abramova, V., and J. Bernardino. 2013. “NoSQL databases: MongoDB vs cassandra.” In Proc., Int. Conf. on Computer Science and Software Engineering, 14–22. New York: Association for Computing Machinery. https://dl.acm.org/doi/10.1145/2494444.2494447.
Ahmad Fuad, N., A. Yusoff, Z. Ismail, and Z. Majid. 2018. “Comparing the performance of point cloud registration methods for landslide monitoring using mobile laser scanning data.” Int. Arch. Photogr. Remote Sens. Spatial Inf. Sci. 4 (9): 11–21. https://doi.org/10.5194/isprs-archives-XLII-4-W9-11-2018.
Aljumaily, H., D. F. Laefer, and D. Cuadra. 2017. “Urban point cloud mining based on density clustering and MapReduce.” J. Comput. Civ. Eng. 31 (5): 04017021. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000674.
Andreev, K., and H. Racke. 2006. “Balanced graph partitioning.” Theory Comput. Syst. 39 (6): 929–939. https://doi.org/10.1007/s00224-006-1350-7.
Azqueta-Alzúaz, A., M. Patiño-Martinez, I. Brondino, and R. Jimenez-Peris. 2017. “Massive data load on distributed database systems over HBase.” In Proc., 17th IEEE/ACM Int. Symp. on Cluster, Cloud and Grid Computing, 776–779. New Year: IEEE.
Bello, S. A., L. O. Oyedele, O. O. Akinade, M. Bilal, J. M. D. Delgado, L. A. Akanbi, A. O. Ajayi, and H. A. Owolabi. 2020. “Cloud computing in construction industry: Use cases, benefits and challenges.” Autom. Constr. 122 (Feb): 103441. https://doi.org/10.1016/j.autcon.2020.103441.
Boucheny, C., and A. Ribes. 2011. Eye-dome lighting: A non-photorealistic shading technique. Setúbal, Portugal: Science and Technology Publications. https://doi.org/10.5220/0010268902450252.
Brédif, M., B. Vallet, and B. Ferrand. 2015. “Distributed dimensonality-based rendering of lidar point clouds.” Int. Arch. Photogr. Remote Sens. Spatial Inf. Sci. 40 (Sep): 15. https://doi.org/10.5194/isprsarchives-XL-3-W3-559-2015.
Bridson, R. 2007. “Fast Poisson disk sampling in arbitrary dimensions.” SIGGRAPH Sketches 10 (1): 1. https://doi.org/10.1145/1278780.1278807.
Byna, S., J. Chou, O. Rubel, H. Karimabadi, W. S. Daughter, V. Roytershteyn, E. W. Bethel, M. Howison, K.-J. Hsu, and K.-W. Lin. 2012. “Parallel I/O, analysis, and visualization of a trillion particle simulation.” In Proc., Int. Conf. on High Performance Computing, Networking, Storage and Analysis, 1–12. New York: IEEE.
Byrne, J., L. Buckley, S. Caulfield, and D. Moloney. 2018. “VOLA: A compact volumetric format for 3D mapping and embedded systems.” In Proc., GISTAM, 129–137. Setúbal, Portugal: Science and Technology Publications. https://doi.org/10.5220/0006797501290137.
Cha, G., S. Park, and T. Oh. 2019. “A terrestrial LiDAR-based detection of shape deformation for maintenance of bridge structures.” J. Constr. Eng. Manage. 145 (12): 04019075. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001701.
Chen, H.-M., K.-C. Chang, and T.-H. Lin. 2016. “A cloud-based system framework for performing online viewing, storage, and analysis on big data of massive BIMs.” Autom. Constr. 71 (Nov): 34–48. https://doi.org/10.1016/j.autcon.2016.03.002.
Choi, W., S. Hong, and W.-K. Jeong. 2016. “Vispark: GPU-accelerated distributed visual computing using Spark.” SIAM J. Sci. Comput. 38 (5): S700–S719. https://doi.org/10.1137/15M1026407.
Chong, H.-Y., J. S. Wong, and X. Wang. 2014. “An explanatory case study on cloud computing applications in the built environment.” Autom. Constr. 44 (Aug): 152–162. https://doi.org/10.1016/j.autcon.2014.04.010.
City of Melbourne Open Data Team. 2018. “City of Melbourne 3D point cloud 2018.” Accessed September 2, 2021. https://data.melbourne.vic.gov.au/Property-Planning/City-of-Melbourne-3D-Point-Cloud-2018/2dqj-9ydd.
Cura, R., J. Perret, and N. Paparoditis. 2017. “A scalable and multi-purpose point cloud server (PCS) for easier and faster point cloud data management and processing.” J. Photogramm. Remote Sens. 127 (May): 39–56. https://doi.org/10.1016/j.isprsjprs.2016.06.012.
Czerniawski, T., J. W. Ma, and F. Leite. 2021. “Automated building change detection with amodal completion of point clouds.” Autom. Constr. 124 (Apr): 103568. https://doi.org/10.1016/j.autcon.2021.103568.
Dean, J., and S. Ghemawat. 2008. “MapReduce: Simplified data processing on large clusters.” Commun. ACM 51 (1): 107–113. https://doi.org/10.1145/1327452.1327492.
Dede, E., M. Govindaraju, D. Gunter, R. S. Canon, and L. Ramakrishnan. 2013. “Performance evaluation of a mongodb and hadoop platform for scientific data analysis.” In Proc., 4th ACM Workshop on Scientific Cloud Computing, 13–20. New York: ACM.
Deibe, D., M. Amor, and R. Doallo. 2018. “Big data storage technologies: A case study for web-based LiDAR visualization.” In Proc., 2018 IEEE Int. Conf. on Big Data (Big Data), 3831–3840. New York: IEEE.
Discher, S., R. Richter, and J. Döllner. 2018. “A scalable webGL-based approach for visualizing massive 3D point clouds using semantics-dependent rendering techniques.” In Proc., 23rd Int. ACM Conf. on 3D Web Technology. New York: ACM.
Discher, S., R. Richter, M. Trapp, and J. Döllner. 2019. “Service-oriented processing and analysis of massive point clouds in geoinformation management.” In Service-oriented mapping, 43–61. Berlin: Springer.
Eldawy, A., L. Alarabi, and M. F. Mokbel. 2015. “Spatial partitioning techniques in SpatialHadoop.” Proc. VLDB Endowment 8 (12): 1602–1605. https://doi.org/10.14778/2824032.2824057.
Eldawy, A., M. F. Mokbel, and C. Jonathan. 2016. “HadoopViz: A MapReduce framework for extensible visualization of big spatial data.” In Proc., 2016 IEEE 32nd Int. Conf. on Data Engineering, 601–612. New York: IEEE.
Elseberg, J., D. Borrmann, and A. Nüchter. 2013. “One billion points in the cloud—An octree for efficient processing of 3D laser scans.” ISPRS J. Photogramm. Remote Sens. 76 (Feb): 76–88. https://doi.org/10.1016/j.isprsjprs.2012.10.004.
García-García, F., A. Corral, L. Iribarne, and M. Vassilakopoulos. 2018. “Voronoi-diagram based partitioning for distance join query processing in SpatialHadoop.” In Proc., Int. Conf. on Model and Data Engineering, 251–267. Berlin: Springer.
Gent, I. P., and T. Walsh. 1998. “Analysis of heuristics for number partitioning.” Comput. Intell. 14 (3): 430–451. https://doi.org/10.1111/0824-7935.00069.
Giachetta, R. 2015. “A framework for processing large scale geospatial and remote sensing data in MapReduce environment.” Comput. Graphics 49 (Jun): 37–46. https://doi.org/10.1016/j.cag.2015.03.003.
Gross, M., and H. Pfister. 2011. Point-based graphics. Amsterdam, Netherlands: Elsevier.
Guo, J., Q. Wang, and J.-H. Park. 2020. “Geometric quality inspection of prefabricated MEP modules with 3D laser scanning.” Autom. Constr. 111 (Mar): 103053. https://doi.org/10.1016/j.autcon.2019.103053.
Halili, E. H. 2008. Apache JMeter. Birmingham, UK: Packt Publishing.
Han, S., H. Cho, S. Kim, J. Jung, and J. Heo. 2013. “Automated and efficient method for extraction of tunnel cross sections using terrestrial laser scanned data.” J. Comput. Civ. Eng. 27 (3): 274–281. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000211.
Han, S., S. Kim, J. H. Jung, C. Kim, K. Yu, and J. Heo. 2012. “Development of a hashing-based data structure for the fast retrieval of 3D terrestrial laser scanned data.” Comput. Geosci. 39 (Feb): 1–10. https://doi.org/10.1016/j.cageo.2011.05.005.
Han, S. H., J. Heo, H. G. Sohn, and K. Yu. 2009. “Parallel processing method for airborne laser scanning data using a PC cluster and a virtual grid.” Sensors 9 (4): 2555–2573. https://doi.org/10.3390/s90402555.
He, H., Z. Du, W. Zhang, and A. Chen. 2016. “Optimization strategy of Hadoop small file storage for big data in healthcare.” J. Supercomput. 72 (10): 3696–3707. https://doi.org/10.1007/s11227-015-1462-4.
Hong, S., J. Jung, S. Kim, H. Cho, J. Lee, and J. Heo. 2015. “Semi-automated approach to indoor mapping for 3D as-built building information modeling.” Comput. Environ. Urban Syst. 51 (May): 34–46. https://doi.org/10.1016/j.compenvurbsys.2015.01.005.
Houshiar, H., D. Borrmann, J. Elseberg, A. Nüchter, F. Näth, and S. Winkler. 2013. “On-site semantic mapping of archaeological excavation areas.” In ISPRS annals of the photogrammetry, remote sensing and spatial information sciences. Christian Heipke, Germany: International Society for Photogrammetry and Remote Sensing. https://doi.org/10.5194/isprsannals-II-5-W1-163-2013.
Jung, J., S. Hong, S. Jeong, S. Kim, H. Cho, S. Hong, and J. Heo. 2014. “Productive modeling for development of as-built BIM of existing indoor structures.” Autom. Constr. 42 (Jun): 68–77. https://doi.org/10.1016/j.autcon.2014.02.021.
Kang, S. J., S. Y. Lee, and K. M. Lee. 2015. “Performance comparison of OpenMP, MPI, and MapReduce in practical problems.” Adv. Multimedia 2015 (Jan): 15. https://doi.org/10.1155/2015/575687.
Keim, D. A. 2002. “Information visualization and visual data mining.” IEEE Trans. Vis. Comput. Graphics 8 (1): 1–8. https://doi.org/10.1109/2945.981847.
Lee, J., K. C. Lee, S. Lee, Y. J. Lee, and S. H. Sim. 2019. “Long-term displacement measurement of bridges using a LiDAR system.” Struct. Control Health Monit. 26 (10): e2428. https://doi.org/10.1002/stc.2428.
Leutenegger, S. T., M. A. Lopez, and J. Edgington. 1997. “STR: A simple and efficient algorithm for R-tree packing.” In Proc., 13th Int. Conf. on Data Engineering, 497–506. New York: IEEE.
Li, Z., M. E. Hodgson, and W. Li. 2018. “A general-purpose framework for parallel processing of large-scale LiDAR data.” Int. J. Digital Earth 11 (1): 26–47. https://doi.org/10.1080/17538947.2016.1269842.
Liang, F., and Y. Luo. 2013. “A framework of the civil engineering CAD experimental platform based on cloud computing.” In Proc., ICCREM 2013: Construction and Operation in the Context of Sustainability, 577–586. Reston, VA: ASCE. https://doi.org/10.1061/9780784413135.055.
Martinez-Rubi, O., S. Verhoeven, M. Van Meersbergen, P. Van Oosterom, R. GonÁalves, and T. Tijssen. 2015. “Taming the beast: Free and open-source massive point cloud web visualization.” In Proc., Capturing Reality Forum. Salzburg, Austria: Servey Association.
Meng, B., W.-B. Guo, G.-S. Fan, and N.-W. Qian. 2016. “A novel approach for efficient accessing of small files in HDFS: TLB-MapFile.” In Proc., 2016 17th IEEE/ACIS Int. Conf. on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), 681–686. New York: IEEE.
Mukupa, W., G. W. Roberts, C. M. Hancock, and K. Al-Manasir. 2017. “A review of the use of terrestrial laser scanning application for change detection and deformation monitoring of structures.” Survey Rev. 49 (353): 99–116. https://doi.org/10.1080/00396265.2015.1133039.
Nguyen, M. H., S. Yoon, S. Park, and J. Heo. 2019. “A demonstration of B-EagleV visualizing massive point cloud directly from HDFS.” In Proc., 2019 IEEE Int. Conf. on Big Data (Big Data), 4121–4124. New York: IEEE.
Oh, C., H. Jung, S. Yi, I. Yoon, and Y. Yi. 2021. “HybridHadoop: CPU-GPU hybrid scheduling in hadoop.” In Proc., Int. Conf. on High Performance Computing in Asia-Pacific Region, 40–49. New York: Association for Computing Machinery. https://doi.org/10.1145/3432261.3432264.
Park, S., S. Ju, S. Yoon, M. H. Nguyen, and J. Heo. 2021. “An efficient data structure approach for BIM-to-point-cloud change detection using modifiable nested octree.” Autom. Constr. 132 (3): 103922. https://doi.org/10.1016/j.autcon.2021.103922.
Qin, R., J. Tian, and P. Reinartz. 2016. “3D change detection—Approaches and applications.” ISPRS J. Photogramm. Remote Sens. 122 (Dec): 41–56. https://doi.org/10.1016/j.isprsjprs.2016.09.013.
Ranger, C., R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. 2007. “Evaluating mapreduce for multi-core and multiprocessor systems.” In Proc., 2007 IEEE 13th Int. Symp. on High Performance Computer Architecture, 13–24. New York: IEEE.
Richter, R., and J. Döllner. 2014. “Concepts and techniques for integration, analysis and visualization of massive 3D point clouds.” Comput. Environ. Urban Syst. 45 (May): 114–124. https://doi.org/10.1016/j.compenvurbsys.2013.07.004.
Saganeiti, L., F. Amato, G. Nolè, M. Vona, and B. Murgante. 2020. “Early estimation of ground displacements and building damage after seismic events using SAR and LiDAR data: The case of the Amatrice earthquake in central Italy, on 24th August 2016.” Int. J. Disaster Risk Reduct. 51 (Dec): 101924. https://doi.org/10.1016/j.ijdrr.2020.101924.
Schatz, K., C. Müller, M. Krone, J. Schneider, G. Reina, and T. Ertl. 2016. “Interactive visual exploration of a trillion particles.” In Proc., 2016 IEEE 6th Symp. on Large Data Analysis and Visualization (LDAV), 56–64. New York: IEEE.
Scheiblauer, C., and M. Wimmer. 2011. “Out-of-core selection and editing of huge point clouds.” Comput. Graphics 35 (2): 342–351. https://doi.org/10.1016/j.cag.2011.01.004.
Schreiber, E. L., R. E. Korf, and M. D. Moffitt. 2018. “Optimal multi-way number partitioning.” J. ACM 65 (4): 1–61. https://doi.org/10.1145/3184400.
Schütz, M. 2016. Potree: Rendering large point clouds in web browsers. Wien, Wiedeń: Technische Universität.
Schütz, M., S. Ohrhallinger, and M. Wimmer. 2020. “Fast out-of-core octree generation for massive point clouds.” In Proc., Computer Graphics Forum, 155–167. New York: Wiley.
Sheoran, S., D. Sethia, and H. Saran. 2017. “Optimized mapfile based storage of small files in hadoop.” In Proc., 2017 17th IEEE/ACM Int. Symp. on Cluster, Cloud and Grid Computing, 906–912. New York: IEEE.
Stone, J. E., P. Messmer, R. Sisneros, and K. Schulten. 2016. “High performance molecular visualization: In-situ and parallel rendering with EGL.” In Proc., 2016 IEEE Int. Parallel and Distributed Processing Symp. Workshops, 1014–1023. New York: IEEE.
Tao, W., Y. Zhai, and J. Tchaye-Kondi. 2019. “LHF: A new archive based approach to accelerate massive small files access performance in HDFS.” In Proc., 5th IEEE Int. Conf. On Big Data Service and Applications. New York: IEEE. https://doi.org/10.1109/BigDataService.2019.00012.
Tran, T. H. G., C. Ressl, and N. Pfeifer. 2018. “Integrated change detection and classification in urban areas based on airborne laser scanning point clouds.” Sensors 18 (2): 448. https://doi.org/10.3390/s18020448.
Tysiac, P., A. Wojtowicz, and J. Szulwic. 2016. “Coastal cliffs monitoring and prediction of displacements using terrestial laser scanning.” In Proc., 2016 Baltic Geodetic Congress (BGC Geomatics), 61–66. New York: IEEE.
Unwin A. 2018. Graphical data analysis with R. London: CRC Press.
Vincke, S., R. de Lima Hernandez, M. Bassier, and M. Vergauwen. 2019. “Immersive visualisation of construction site point cloud data, meshes and BIM Models in a VR environment using a gaming engine.” Int. Arch. Photogr. Remote Sens. Spatial Inf. Sci. 5 (Apr): 77–83. https://doi.org/10.5194/isprs-archives-XLII-5-W2-77-2019.
Vo, A. V., C. N. L. Hewage, G. Russo, N. Chauhan, D. F. Laefer, M. Bertolotto, N.-A. Le-Khac, and U. Oftendinger. 2019. “Efficient LiDAR point cloud data encoding for scalable data management within the Hadoop eco-system.” In Proc., 2019 IEEE Int. Conf. on Big Data (Big Data), 5644–5653. New York: IEEE.
Vo, A.-V., N. Konda, N. Chauhan, H. Aljumaily, and D. F. Laefer. 2018. “Lessons learned with laser scanning point cloud management in Hadoop HBase.” In Proc., Workshop of the European Group for Intelligent Computing in Engineering, 231–253. Berlin: Springer.
Vorapongkitipun, C., and N. Nupairoj. 2014. “Improving performance of small-file accessing in Hadoop.” In Proc., 2014 11th Int. Joint Conf. on Computer Science and Software Engineering (JCSSE), 200–205. New York: IEEE.
Wang, C., F. Hu, D. Sha, and X. Han. 2017. “Efficient LiDAR point cloud data managing and processing in a Hadoop-based distributed framework.” ISPRS Ann. Photogr. Remote Sens. Spatial Inf. Sci. 4 (2): 121. https://doi.org/10.5194/isprs-annals-IV-4-W2-121-2017.
Wang, H., N. Li, Z. Wang, and J. Li. 2021. “GPU-based efficient join algorithms on Hadoop.” J. Supercomput. 77 (1): 292–321. https://doi.org/10.1007/s11227-020-03262-6.
Wang, Q., and M.-K. Kim. 2019. “Applications of 3D point cloud data in the construction industry: A fifteen-year review from 2004 to 2018.” Adv. Eng. Inf. 39 (8): 306–319. https://doi.org/10.1016/j.aei.2019.02.007.
Wang, Z., P. Lv, and C. Zheng. 2014. “Cuda on hadoop: A mixed computing framework for massive data processing.” In Foundations and practical applications of cognitive systems and information processing, 253–260. Berlin: Springer.
Westoby, M. J., M. Lim, M. Hogg, M. J. Pound, L. Dunlop, and J. Woodward. 2018. “Cost-effective erosion monitoring of coastal cliffs.” Coastal Eng. 138 (Aug): 152–164. https://doi.org/10.1016/j.coastaleng.2018.04.008.
Winiwarter, L., K. Anders, and B. Höfle. 2021. “M3C2-EP: Pushing the limits of 3D topographic point cloud change detection by error propagation.” ISPRS J. Photogramm. Remote Sens. 178 (Aug): 240–258. https://doi.org/10.1016/j.isprsjprs.2021.06.011.
Xiong, L., G. Wang, Y. Bao, X. Zhou, K. Wang, H. Liu, X. Sun, and R. Zhao. 2019. “A rapid terrestrial laser scanning method for coastal erosion studies: A case study at Freeport, Texas, USA.” Sensors 19 (15): 3252. https://doi.org/10.3390/s19153252.
Xu, X., J. Bureick, H. Yang, and I. Neumann. 2018. “TLS-based composite structure deformation analysis validated with laser tracker.” Compos. Struct. 202 (Oct): 60–65. https://doi.org/10.1016/j.compstruct.2017.10.015.
Yang, C.-T., C.-L. Huang, and C.-F. Lin. 2011. “Hybrid CUDA, OpenMP, and MPI parallel programming on multicore GPU clusters.” Comput. Phys. Commun. 182 (1): 266–269. https://doi.org/10.1016/j.cpc.2010.06.035.
Yao, X., M. F. Mokbel, L. Alarabi, A. Eldawy, J. Yang, W. Yun, L. Li, S. Ye, and D. Zhu. 2017. “Spatial coding-based approach for partitioning big spatial data in Hadoop.” Comput. Geosci. 106 (Sep): 60–67. https://doi.org/10.1016/j.cageo.2017.05.014.
Yeh, D. Y. 1986. “A dynamic programming approach to the complete set partitioning problem.” BIT Numer. Math. 26 (4): 467–474. https://doi.org/10.1007/BF01935053.
Yin, J., A. Foran, and J. Wang. 2013. “DL-MPI: Enabling data locality computation for MPI-based data-intensive applications.” In Proc., 2013 IEEE Int. Conf. on Big Data, 506–511. New York: IEEE.
Yu, J., Z. Zhang, and M. Sarwat. 2018. “GeoSparkViz: A scalable geospatial data visualization framework in the apache spark ecosystem.” In Proc., 30th Int. Conf. on Scientific and Statistical Database Management, 15. New York: ACM.
Zhai, Y., J. Tchaye-Kondi, K.-J. Lin, L. Zhu, W. Tao, X. Du, and M. Guizani. 2021. “Hadoop perfect file: A fast and memory-efficient metadata access archive file to face small files problem in hdfs.” J. Parallel Distrib. Comput. 156: 119–130. https://doi.org/10.1016/j.jpdc.2021.05.011.
Zhang, J., K. Wei, and X. Deng. 2020. “Heuristic algorithms for diversity-aware balanced multi-way number partitioning.” Pattern Recognit. Lett. 136: 56–62. https://doi.org/10.1016/j.patrec.2020.05.022.
Zhang, Y. 2016. “The D-FCM partitioned D-BSP tree for massive point cloud data access and rendering.” ISPRS J. Photogramm. Remote Sens. 120 (Oct): 25–36. https://doi.org/10.1016/j.isprsjprs.2016.08.002.
Zhu, J., J. Li, E. Hardesty, H. Jiang, and K.-C. Li. 2014. “GPU-in-Hadoop: Enabling MapReduce across distributed heterogeneous platforms.” In Proc., 2014  IEEE/ACIS 13th Int. Conf. on Computer and Information Science, 321–326. New York: IEEE.

Information & Authors

Information

Published In

Go to Journal of Computing in Civil Engineering
Journal of Computing in Civil Engineering
Volume 36Issue 3May 2022

History

Received: Sep 19, 2021
Accepted: Jan 3, 2022
Published online: Feb 28, 2022
Published in print: May 1, 2022
Discussion open until: Jul 28, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Minh Hieu Nguyen [email protected]
Ph.D. Candidate, Dept. of Civil and Environmental Engineering, Yonsei Univ., 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea. Email: [email protected]
Sanghyun Yoon [email protected]
Ph.D. Candidate, Dept. of Civil and Environmental Engineering, Yonsei Univ., 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea. Email: [email protected]
Ph.D. Candidate, Dept. of Civil and Environmental Engineering, Yonsei Univ., 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea. ORCID: https://orcid.org/0000-0001-8606-6956. Email: [email protected]
Sangyoon Park [email protected]
Ph.D. Candidate, Dept. of Civil and Environmental Engineering, Yonsei Univ., 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea. Email: [email protected]
Professor, Dept. of Civil and Environmental Engineering, Yonsei Univ., 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea (corresponding author). ORCID: https://orcid.org/0000-0003-1201-1658. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Convex Polyhedra Intersection-Based Triangular Mesh Indexing Approach for BIM-to-Point-Cloud Change Detection, Computing in Civil Engineering 2023, 10.1061/9780784485231.045, (372-380), (2024).
  • Multi feature-rich synthetic colour to improve human visual perception of point clouds, ISPRS Journal of Photogrammetry and Remote Sensing, 10.1016/j.isprsjprs.2023.01.019, 196, (514-527), (2023).
  • Corresponding Intelligent Calculation of the Whole Process of Building Civil Engineering Structure Based on Deep Learning, Scientific Programming, 10.1155/2022/4794073, 2022, (1-10), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share