Technical Papers
Jul 16, 2020

Nonlinear Numerical Modeling of Complex Masonry Heritage Structures Considering History-Related Phenomena in Staged Construction Analysis and Material Uncertainty in Seismic Assessment

Publication: Journal of Performance of Constructed Facilities
Volume 34, Issue 5

Abstract

This paper presents the systematic use of numerical analysis as a tool for addressing some of the most common challenges encountered in the structural analysis of complex historical masonry structures, that is, the description of the effects of history-related phenomena and the uncertainty of material properties. The numerical strategy is based on the use of a constitutive model able to describe time-dependent strain accumulation, as well as damaging behavior under different stress states. This constitutive model is combined with a crack-tracking technique to represent tensile crack localization. The numerical model is applied to the study of two important monuments in Spain; the Mallorca Cathedral and the church of the Poblet Monastery. The staged construction analysis of the first case study allows for understanding the reasons of its current deformed condition, that is, critical construction process, strain accumulation given by long-term creep phenomena, and nonlinear geometric effects. The structural analysis of the second case study allows the structural diagnosis of the existing deformation and cracking patterns given by architectural alterations, insufficient buttressing of the naves, and past earthquakes. The application of a probabilistic analysis to the church of the Poblet monastery allows for considering the effects of the uncertainties of material properties and numerical parameters in the seismic vulnerability assessment.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors would like to thank the Ministry of Science, Innovation and Universities (MCIU) of the Spanish Government, the State Agency of Research (AEI), and the European Regional Development Fund (ERDF) through the SEVERUS project (multilevel evaluation of seismic vulnerability and risk mitigation of masonry buildings in resilient historical urban centres ref. no. RTI2018-099589-BI00).

References

Addessi, D., S. Marfia, E. Sacco, and J. Toti. 2014. “Modeling approaches for masonry structures.” Open Civ. Eng. J. 8 (1): 288–300. https://doi.org/10.2174/1874149501408010288.
Betti, M., A. Borghini, S. Boschi, A. Ciavattone, and A. Vignoli. 2018. “Comparative seismic risk assessment of basilica-type churches.” Supplement, J. Earthquake Eng. 22 (S1): 62–95. https://doi.org/10.1080/13632469.2017.1309602.
Binda, L., A. Anzani, and A. Saisi. 2003. “Failures due to long-term behaviour of heavy structures: The Pavia civic tower and the Noto cathedral.” In Proc., 8th Int. Conf. on Structural Studies Repairs and Maintenance of Heritage Architecture, 99–108. Southampton, UK: WIT Press.
Brandonisio, G., G. Lucibello, E. Mele, and A. De Luca. 2013. “Damage and performance evaluation of masonry churches in the 2009 L’Aquila earthquake.” Eng. Fail. Anal. 34 (Dec): 693–714. https://doi.org/10.1016/j.engfailanal.2013.01.021.
Cecchi, A., and A. Tralli. 2012. “A homogenized viscoelastic model for masonry structures.” Int. J. Solids Struct. 49 (13): 1485–1496. https://doi.org/10.1016/j.ijsolstr.2012.02.034.
CEN (European Committee for Standardization). 2005. Eurocode 8: Design of structures for earthquake resistance. 3: Assessment and retrofitting of buildings. EN 1998-3. Brussels, Belgium: CEN.
Cervera, M. 2003. Viscoelasticity and rate-dependent continuum damage models, monography N-79. Barcelona, Spain: International Center for Numerical Methods in Engineering.
Cervera, M., L. Pelà, R. Clemente, and P. Roca. 2010. “A crack-tracking technique for localized damage in quasi-brittle materials.” Eng. Fract. Mech. 77 (13): 2431–2450. https://doi.org/10.1016/j.engfracmech.2010.06.013.
Clemente, R. 2006. Análysis Estructural de Edificios Históricos Mediante Modelos Localizados de Fisuración. Barcelona, Spain: Universitat Politècnica de Catalunya (UPC-BarcelonaTech).
CNR (National Research Council). 2014. Guide for the probabilistic assessment of the seismic safety of existing buildings. CNR-DT 212/2013. Rome: CNR.
Compán, V., P. Pachón, M. Cámara, P. B. Lourenço, and A. Sáez. 2017. “Structural safety assessment of geometrically complex masonry vaults by non-linear analysis. The Chapel of the Würzburg Residence (Germany).” Eng. Struct. 140 (Jun): 1–13. https://doi.org/10.1016/j.engstruct.2017.03.002.
D’Altri, A. M., V. Sarhosis, G. Milani, J. Rots, S. Cattari, S. Lagomarsino, E. Sacco, A. Tralli, G. Castellazzi, and S. de Miranda. 2019. “Modeling strategies for the computational analysis of unreinforced masonry structures: Review and classification.” In Archives of computational methods in engineering. Dordrecht, Netherlands: Springer.
Domenge, J. 1997. L’obra de la Seu. El procés de construcció de la catedral de Mallorca en el trescents. [In Catalan.] Palma, Spain: Institut d’Estudis Baleàrics.
Domenge, J. 2003. Análisis y estudio de los libros históricos de la Catedral. Documento No 3. Estudio, diagnóstico y peritación y en su caso planteamie nto de actuaciones sobre el comportamiento constructivo-estructural de la catedral de Santa María, en la ciudad de Palma, isla de Mallorca (Baleares). Fase primera. [In Spanish.] Barcelona, Spain: Technical Univ. of Catalonia.
Drougkas, A., E. Verstrynge, P. Szekér, G. Heirman, L. E. Bejarano-Urrego, G. Giardina, and K. Van Balen. 2019. “Numerical modeling of a church nave wall subjected to differential settlements: Soil-structure interaction, time-dependence and sensitivity analysis.” Int. J. Archit. Heritage 1–18. https://doi.org/10.1080/15583058.2019.1602682.
Elyamani, A. 2015. Integrated monitoring and structural analysis strategies for the study of large historical construction. Application to Mallorca cathedral. Barcelona, Spain: Universitat Politècnica de Catalunya (UPC-BarcelonaTech).
Fajfar, P. 1999. “Capacity spectrum method based on inelastic demand spectra.” Earthquake Eng. Struct. Dyn. 28 (9): 979–993. https://doi.org/10.1002/(SICI)1096-9845(199909)28:9%3C979::AID-EQE850%3E3.0.CO;2-1.
Faria, R., J. Oliver, and M. Cervera. 1998. “A strain-based plastic viscous-damage model for massive concrete structures.” Int. J. Solids Struct. 35 (14): 1533–1558. https://doi.org/10.1016/S0020-7683(97)00119-4.
FEMA. 2010. HAZUS-MH MR4: Technical manual, volume earthquake model. Washington, DC: FEMA.
Gambarotta, L., and S. Lagomarsino. 1997a. “Damage models for the seismic response of brick masonry shear walls. I: The mortar joint model and its applications.” Earthquake Eng. Struct. Dyn. 26 (4): 423–439. https://doi.org/10.1002/(SICI)1096-9845(199704)26:4%3C423::AID-EQE650%3E3.0.CO;2-.
Gambarotta, L., and S. Lagomarsino. 1997b. “Damage models for the seismic response of brick masonry shear walls. II: The continuum model and its applications.” Earthquake Eng. Struct. Dyn. 26 (4): 441–462. https://doi.org/10.1002/(SICI)1096-9845(199704)26:4%3C441::AID-EQE651%3E3.0.CO;2-0.
Giardina, G., A. V. Van de Graaf, M. A. Hendriks, J. G. Rots, and A. Marini. 2013. “Numerical analysis of a masonry façade subject to tunnelling-induced settlements.” Eng. Struct. 54 (Sep): 234–247. https://doi.org/10.1016/j.engstruct.2013.03.055.
Iannuzzo, A., M. Angelillo, E. De Chiara, F. De Guglielmo, F. De Serio, F. Ribera, and A. Gesualdo. 2018. “Modelling the cracks produced by settlements in masonry structures.” Meccanica 53 (7): 1857–1873. https://doi.org/10.1007/s11012-017-0721-2.
Instituto de la Construcción y del Cemento ‘Eduardo Torroja’. 1971. Obras De Fábrica. Madrid, Spain: Instituto de la Construcción y del Cemento ‘Eduardo Torroja’.
ISCARSAH Committee and ICOMOS (International Scientific Committee on the Analysis and Restoration of Structures of Architectural Heritage Committee and International Council on Monuments and Sites). 2005. Recommendations for the analysis, conservation and structural restoration of architectural heritage. Charenton-le-Pont, France: ICOMOS.
ISO. 2010. Bases for design of structures-assessment of existing structures. ISO 13822. Genève: ISO.
Italian Ministry of Infrastructure and Transport. 2008. LC-FC Norma Italiana. Rome: Italian Ministry of Infrastructure and Transport.
Lasciarrea, W. G., A. Amorosi, D. Boldini, G. de Felice, and M. Malena. 2019. “Jointed masonry model: A constitutive law for 3D soil-structure interaction analysis.” Eng. Struct. 201 (Dec): 109803. https://doi.org/10.1016/j.engstruct.2019.109803.
Lourenço, P. B. 1996. Computational strategies for masonry structures. Delft, Netherlands: Delft Univ. of Technology.
Lourenço, P. B., J. G. Rots, and J. Blaauwendraad. 1998. “Continuum model for masonry: Parameter estimation and validation.” J. Struct. Eng. 124 (6): 642–652. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:6(642).
Lourenço, P. B., A. Trujillo, N. Mendes, and L. F. Ramos. 2012. “Seismic performance of the St. George of the Latins church: Lessons learned from studying masonry ruins.” Eng. Struct. 40 (Jul): 501–518. https://doi.org/10.1016/j.engstruct.2012.03.003.
Macorini, L., and B. A. Izzuddin. 2011. “A non-linear interface element for 3D mesoscale analysis of brick-masonry structures.” Int. J. Numer. Methods Eng. 85 (12): 1584–1608. https://doi.org/10.1002/nme.3046.
Milani, G., R. Shehu, and M. Valente. 2017. “Seismic assessment of masonry towers by means of nonlinear static procedures.” Procedia Eng. 199: 266–271. https://doi.org/10.1016/j.proeng.2017.09.022.
Milani, G., and M. Valente. 2015. “Comparative pushover and limit analyses on seven masonry churches damaged by the 2012 Emilia-Romagna (Italy) seismic events: Possibilities of non-linear finite elements compared with pre-assigned failure mechanisms.” Eng. Fail. Anal. 47 (Jan): 129–161. https://doi.org/10.1016/j.engfailanal.2014.09.016.
Milani, G., M. Valente, and C. Alessandri. 2018. “The narthex of the church of the nativity in Bethlehem: A non-linear finite element approach to predict the structural damage.” Comput. Struct. 207 (Sep): 3–18. https://doi.org/10.1016/j.compstruc.2017.03.010.
Milani, G., and G. Venturini. 2013. “Safety assessment of four masonry churches by a plate and shell FE non-linear approach.” J. Perform. Constr. Facil. 27 (1): 27–42. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000321.
MIT (Ministero delle Infrastrutture e Trasporti). 2019. Circolare Del Ministero Delle Infrastructure e Dei Trasporti, n.7 Del 21 Gennaio 2019: Istruzioni per l’applicazione Dell’aggiornamento Delle Norme Tecniche per Le Costruzioni Di Cui Al D.M. 17 Gennaio 2018. [In Italian.]. Rome: MIT.
Ortega, J., G. Vasconcelos, H. Rodrigues, and M. Correia. 2018. “Assessment of the influence of horizontal diaphragms on the seismic performance of vernacular buildings.” Bull. Earthquake Eng. 16 (9): 3871–3904. https://doi.org/10.1007/s10518-018-0318-8.
Papa, E. 1996. “A unilateral damage model for masonry based on a homogenisation procedure.” Mech. Cohesive-Frictional Mater. 1 (4): 349–366. https://doi.org/10.1002/(SICI)1099-1484(199610)1:4%3C349::AID-CFM18%3E3.0.CO;2-M.
Papa, E., and A. Taliercio. 2005. “A visco-damage model for brittle materials under monotonic and sustained stresses.” Int. J. Numer. Anal. Methods Geomech. 29 (3): 287–310. https://doi.org/10.1002/nag.415.
Pelà, L. 2009. “Continuum damage model for nonlinear analysis of masonry structures.” Ph.D. thesis, Dept. of Strength of Materials and Structural Engineering, Technical Univ. of Catalonia.
Pelà, L., J. Bourgeois, P. Roca, M. Cervera, and M. Chiumenti. 2016. “Analysis of the effect of provisional ties on the construction and current deformation of Mallorca cathedral.” Int. J. Archit. Heritage 10 (4): 418–437. https://doi.org/10.1080/15583058.2014.996920.
Roca, P. 2005. Monasterio de Santa Maria de Poblet: Análisis de Efectos Estructurales Causados Por Sobrecargas de Uso de Biblioteca En El Edificio Del Antiguo Dormitorio de Los Monjes En Biblioteca. Barcelona, Spain: Universitat Politècnica de Catalunya (UPC-BarcelonaTech).
Roca, P., M. Cervera, and G. Gariup. 2010. “Structural analysis of masonry historical constructions. Classical and advanced approaches.” Arch. Comput. Methods Eng. 17 (3): 299–325. https://doi.org/10.1007/s11831-010-9046-1.
Roca, P., M. Cervera, L. Pelà, R. Clemente, and M. Chiumenti. 2012. “Viscoelasticity and damage model for creep behavior of historical masonry structures.” Open Civ. Eng. J. 6 (1): 188–199. https://doi.org/10.2174/1874149501206010188.
Roca, P., M. Cervera, L. Pelà, R. Clemente, and M. Chiumenti. 2013. “Continuum FE models for the analysis of Mallorca cathedral.” Eng. Struct. 46 (Jan): 653–670. https://doi.org/10.1016/j.engstruct.2012.08.005.
Roca, P., and J. L. González. 2008. Estudio, Diagóstico y Peritación y En Su Caso Planteamiento de Actuaciones Sobre El Comportamiento Constructivo-Estructural de La Catedral de Santa Maria En La Ciudad de Palma, Isla de Mallorca (Baleares). [In Spanish.] Barcelona, Spain: Technical Univ. of Catalonia, UPC-BarcelonaTech.
Ruiz, G. M. 2007. Vulnerabilidad Sísmica Para Edificios Históricos de Obra de Fábrica de Mediana y Gran Luz. Barcelona, Spain: Technical Univ. of Catalonia (UPC-BarcelonaTech).
Saloustros, S. 2013. Structural analysis of the church of the poblet monastery. Barcelona, Spain: Universitat Politècnica de Catalunya.
Saloustros, S., M. Cervera, and L. Pelà. 2018a. “Tracking multi-directional intersecting cracks in numerical modelling of masonry shear walls under cyclic loading.” Meccanica 53 (7): 1757–1776. https://doi.org/10.1007/s11012-017-0712-3.
Saloustros, S., L. Pelà, M. Cervera, and P. Roca. 2018b. “An enhanced finite element macro-model for the realistic simulation of localized cracks in masonry structures: A large-scale application.” Int. J. Archit. Heritage 12 (3): 432–447. https://doi.org/10.1080/15583058.2017.1323245.
Saloustros, S., L. Pelà, F. R. Contrafatto, P. Roca, and I. Petromichelakis. 2019. “Analytical derivation of seismic fragility curves for historical masonry structures based on stochastic analysis of uncertain material parameters.” Int. J. Archit. Heritage 13 (7): 1142–1164. https://doi.org/10.1080/15583058.2019.1638992.
Saloustros, S., L. Pelà, P. Roca, and J. Portal. 2015. “Numerical analysis of structural damage in the church of the poblet monastery.” Eng. Fail. Anal. 48 (Feb): 41–61. https://doi.org/10.1016/j.engfailanal.2014.10.015.
Taliercio, A., and L. Binda. 2007. “The basilica of san Vitale in Ravenna: Investigation on the current structural faults and their mid-term evolution.” J. Cult. Heritage 8 (2): 99–118. https://doi.org/10.1016/j.culher.2006.09.005.
Theodossopoulos, D., and B. Sinha. 2013. “A review of analytical methods in the current design processes and assessment of performance of masonry structures.” Constr. Build. Mater. 41 (Apr): 990–1001. https://doi.org/10.1016/j.conbuildmat.2012.07.095.
Valente, M., G. Barbieri, and L. Biolzi. 2017. “Damage assessment of three medieval churches after the 2012 Emilia earthquake.” Bull. Earthquake Eng. 15 (7): 2939–2980. https://doi.org/10.1007/s10518-016-0073-7.
Vendrell, M., and P. Giràldez. 2012. Monestir de Poblet. Materials de Les Voltes de La Nau de l’església. Barcelona, Spain: Technical Univ. of Catalonia (UPC-BarcelonaTech).
Verstrynge, E., L. Schueremans, D. Van Gemert, and M. A. N. Hendriks. 2011. “Modelling and analysis of time-dependent behaviour of historical masonry under high stress levels.” Eng. Struct. 33 (1): 210–217. https://doi.org/10.1016/j.engstruct.2010.10.010.

Information & Authors

Information

Published In

Go to Journal of Performance of Constructed Facilities
Journal of Performance of Constructed Facilities
Volume 34Issue 5October 2020

History

Received: Feb 6, 2020
Accepted: Apr 7, 2020
Published online: Jul 16, 2020
Published in print: Oct 1, 2020
Discussion open until: Dec 16, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Research Fellow, Dept. of Civil and Environmental Engineering, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), Jordi Girona 1-3, Barcelona 08034, Spain. ORCID: https://orcid.org/0000-0002-9513-8373. Email: [email protected]
Associate Professor, Dept. of Civil and Environmental Engineering, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), Jordi Girona 1-3, Barcelona 08034, Spain (corresponding author). ORCID: https://orcid.org/0000-0001-7760-8290. Email: [email protected]
Professor, Dept. of Civil and Environmental Engineering, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), Jordi Girona 1-3, Barcelona 08034, Spain. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share