Technical Papers
Jul 21, 2022

Importance of Concrete Mesoscale Structure on Bond-Slip Behavior of Externally Bonded CFRP Strips

Publication: Journal of Composites for Construction
Volume 26, Issue 5

Abstract

Currently, the effect of the concrete substrate on the load-bearing capacity of externally bonded carbon fiber-reinforced polymer (CFRP) strips is determined in the guidelines solely on the basis of the concrete strength. In addition to strength, surface preparations can improve the bond resistance by exposing the aggregates of the substrate. However, the interlocking also depends on the parameters that derive from the inner concrete structure such as the aggregate grain dimension and shape, as well as the air void distribution. Therefore, the influence of the concrete inner structure on the bond is investigated with double shear tests by comparing specimens with equivalent concrete strength and varying grain shape and dimension. Bond parameters are calculated using a novel procedure based on optical measurements. Furthermore, crack paths are analyzed by means of computed tomography (CT) scans, which prove to be an essential inspecting technique for characterizing the inner concrete structure. The fracture energy is approximately 30% higher for concrete with a maximum grain size of 8 mm compared to an equivalent mortar with 4 mm maximum grain size.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The research is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Research Training Group (project number 255042459).

Notation

The following symbols are used in this paper:
Asp
Specific area of the aggregates;
Ef
Elastic modulus CFRP strip (N/mm2);
FACT
Force at the actual time step (N/mm2);
FDEB
Debonding force (N/mm2);
fck
Characteristic value of compressive strength;
fcm,cube
Mean value of compressive strength (MPa);
fctm,split
Mean value of tensile strength from splitting tests (MPa);
fctm,surf
Mean value of the surface tensile strength (MPa);
ff
Maximum stress value for CFRP (MPa);
ft,surf
Surface tensile strength (MPa);
GF
Fracture energy N/mm;
GF,fib
Fracture energy according to fib (2001) (N/mm);
GF,mean
Mean value of fracture energy (N/mm);
j
Aggregate fraction considered in the excess paste thickness calculation;
L
Glued length (mm);
Ra
Profile mean height of a texture line;
rsp,j
Specific area ratio (area to volume) (1/mm);
Sa
Arithmetic mean height of a texture surface (μm);
scalc
Displacement in the approximation procedure (mm);
si
Slip at iteration step i (mm);
sL1
Slip at maximum shear stress according to Holzenkämpfer (1994) (mm);
sL0
Slip value at shear stress zero according to Holzenkämpfer (1994) (mm);
smeas
Displacement difference between the adherent CFRP strip and the concrete substrate (mm);
tE,PASTE
Excess paste thickness (μm);
VA,COMP
Volume of air after compaction (mm3);
VAGG
Aggregate volume (mm3);
VE,PASTE
Excess paste volume (mm3);
VPASTE
Volume of paste (mm3);
ɛcalc
Strain in the approximation procedure (N/mm2);
ɛf
Ultimate strain for CFRP (N/mm2);
ɛi
Strain value at iteration step i (N/mm2);
ϕ
Packing density;
σ2
Variance;
τcalc
Tangential stress value in the approximation procedure;
τi
Tangential stress at iteration step i (N/mm2); and
τL1
Maximum tangential stress (N/mm2).

References

ACI (American Concrete Institute). 2017. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. ACI 440.2R-17. Farmington Hills, MI: ACI.
ASTM. 2020. Standard specification for Portland cement. ASTM C150 M-20. West Conshohocken, PA: ASTM.
ASTM. 2021. Test method for pull-off adhesion strength of coatings on concrete using portable pull-off adhesion testers. ASTM D 7234. West Conshohocken, PA: ASTM.
Bilotta, A., C. Faella, E. Martinelli, and E. Nigro. 2012. “Indirect identification method of bilinear interface laws for FRP bonded on a concrete substrate.” J. Compos. Constr. 16 (2): 171–184. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000253.
Buzug, T. M. 2008. Computed tomography. Berlin, HL: Springer.
Carloni, C. 2014. “Analyzing bond characteristics between composites and quasi-brittle substrates in the repair of bridges and other concrete structures.” In Advanced composites in bridge construction and repair, edited by Y. J. Kim, Vol. 50 of Woodhead Publishing Series in Civil and Structural Engineering, 61–93. Amsterdam, Netherlands: Elsevier/Woodhead.
Carrara, P., and D. Ferretti. 2013. “A finite-difference model with mixed interface laws for shear tests of FRP plates bonded to concrete.” Composites, Part B 54: 329–342. https://doi.org/10.1016/j.compositesb.2013.05.030.
Carrara, P., D. Ferretti, F. Freddi, and G. Rosati. 2011. “Shear tests of carbon fiber plates bonded to concrete with control of snap-back.” Eng. Fract. Mech. 78 (15): 2663–2678. https://doi.org/10.1016/j.engfracmech.2011.07.003.
CEN (European Committee for Standardization). 1995. Aerospace series - carbon fibre reinforced plastics unidirectional laminates, tensile test parallel to the fibre direction. EN 2561:1995. Brussels, Belgium: CEN.
CEN (European Committee for Standardization). 1999. Products and systems for the protection and repair of concrete structures - test methods - measurement of bond strength by pull-off. EN 1542:1999. Brussels, Belgium: CEN.
CEN (European Committee for Standardization). 2009. Adhesive - determination of tensile lap-shear strength of bonded assemblies. EN 1465:2009. Brussels, Belgium: CEN.
Chen, J. F., and J. G. Teng. 2001. “Anchorage strength models for FRP and steel plates bonded to concrete.” J. Struct. Eng. 127 (7): 784–791. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(784).
CNR (National Research Council). 2013. Guide for the design and construction of externally bonded FRP systems for strengthening existing structures. CNR-DT 200 R1/2013. Rome: CNR.
DAfStb. 2012. On the strengthening of concrete members with adhesively bonded reinforcement. Berlin: Deutscher Ausschuss für Stahlbeton [German Comitee for Structural Concrete].
DAfStb. 2013. “Praxisgerechte Bemessungsansätze für das wirtschaftliche Verstärken von Betonbauteilen mit geklebter Bewehrung – Verbundtragfähigkeit unter nicht ruhender belastung [Practical design approaches for an optimal strengthening of concrete components with glued reinforcement - Bond bearing capacity under non-static loads].” [In German.] In Booklet 593, edited by T. Leusmann and H. Budelmann. Berlin: Beuth.
D’Antino, T. 2014. “Bond behavior in fiber reinforced polymer composites and fiber reinforced cementitious matrix composites.” Ph.D. thesis, Dept. of Civil, Environmental and Architectural Engineering, Univ. of Padua.
De Larrard, F. 1999. Concrete mixture proportioning: A scientific approach. London: Taylor & Francis.
De Lorenzis, L., and G. Zavarise. 2008. “Modeling of mixed-mode debonding in the peel test applied to superficial reinforcements.” Int. J. Solids Struct. 45 (20): 5419–5436. https://doi.org/10.1016/j.ijsolstr.2008.05.024.
D’Errico, J. 2012. fminsearchbnd, fminsearchcon. Accessed October 28, 2020. https://www.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd-fminsearchcon.
Ferracuti, B., M. Savoia, and C. Mazzotti. 2007. “Interface law for FRP-concrete delamination.” Compos. Struct. 80 (4): 523–531. https://doi.org/10.1016/j.compstruct.2006.07.001.
fib (International Federation for Structural Concrete). 2001. Externally bonded FRP reinforcement for RC structures: Technical report on the design and use of externally bonded fibre reinforced polymer reinforcement (FRP EBR) for reinforced concrete structures. Lausanne, Switzerland: fib.
Finckh, W. 2012. “Einfluss bauteilspezifischer effekte auf die bemessung von mit cfk-lamellen verstärkten stahlbetonbauteilen [Influence of member-specific effects on the design of reinforced concrete members strengthened using CFRP strips].” [In German.] Ph.D. thesis, Institut für Baustoffe und Konstruktion Lehrstuhl für Massivbau, Technical Univ. of Munich.
Freddi, F., and M. Savoia. 2008. “Analysis of FRP-concrete debonding via boundary integral equations.” Eng. Fract. Mech. 75 (6): 1666–1683. https://doi.org/10.1016/j.engfracmech.2007.05.016.
GOM. 2022. Gom adjustable systems. Accessed April 23, 2022. https://www.gom.com/de-de/produkte/3d-testing/aramis-adjustable.
Holzenkämpfer, P. 1994. “Ingenieurmodelle des verbunds geklebter bewehrung für betonbauteile [Engineering models of bonded reinforcement for concrete structures].” [In German.] Ph.D. thesis, Institute of Building Materials, Concrete Construction and Fire Safety, Univ. of Braunschweig.
Huss, A. 2010. “Mischungsentwurf und Fließeigenschaften von Selbstverdichtendem beton (SVB) von Mehlkorntyp unter Berücksichtigung der granulometrischen Eigenschaften der Gesteinskörnung [Mix design and flow properties of powder type Self-Compacting Concrete (SCC) in view of the granulometric characteristics of the aggregates].” [In German.] Ph.D. thesis, Materialprüfungsanstalt Universität Stuttgart Otto-Graf-Institut (FMPA), Univ. Stuttgart.
Iovinella, I., A. Prota, and C. Mazzotti. 2013. “Influence of surface roughness on the bond of FRP laminates to concrete.” Constr. Build. Mater. 40: 533–542. https://doi.org/10.1016/j.conbuildmat.2012.09.112.
ISO. 1995. Adhesives - designation of main failure patterns. ISO 10365:1992. Geneva: ISO.
ISO. 2010. Geometrical product specifications (GPS) – surface texture: Profile method – terms, definitions and surface texture parameters. EN ISO 4287. Geneva: ISO.
ISO. 2016. Paints and varnishes – determination of density: Part 1: Pycnometer method. EN ISO 2811-1. Geneva: ISO.
ISO. 2020. Geometrical product specifications (GPS) – surface texture: Areal – Part 2: Terms, definitions and surface texture parameters. EN ISO 25178-2. Geneva: ISO.
Kennedy, C. T. 1940. “The design of concrete mixes.” J. Am. Concr. Inst. 36 (2): 373–400.
Lagarias, J. C., J. A. Reeds, M. H. Wright, and P. E. Wright. 1998. “Convergence properties of the Nelder–Mead simplex method in low dimensions.” SIAM J. Optim. 9 (1): 112–147. https://doi.org/10.1137/S1052623496303470.
Ledèe, V., F. De Larrard, T. Sedran, and F. Brochu. 2004. Mode opératoire, méthode d’essai des laboratoires des ponts et chaussées. Rep. No. 61. Paris: Essai de compacité des fractions granulaires. Accessed October 28, 2020. https://betonlabpro.ifsttar.fr/fileadmin/contributeurs/BetonlabPro/doc/ML.
Leusmann, T. 2015. “Das verbundtragverhalten geklebter kohlefaserkunststoffe auf beton unter schwingender beanspruchung [load bearing capacity of CFRP glued on concrete under cyclic load].” [In German.] Ph.D. thesis, Institute of Building Materials, Concrete Construction and Fire Safety, Univ. of Braunschweig.
Li, Y.-Q., J.-F. Chen, Z.-J. Yang, E. Esmaeeli, W. Sha, and Y.-J. Huang. 2021. “Effects of concrete heterogeneity on FRP-concrete bond behaviour: Experimental and mesoscale numerical studies.” Compos. Struct. 275: 114436. https://doi.org/10.1016/j.compstruct.2021.114436.
Lu, X. Z., J. G. Teng, L. P. Ye, and J. J. Jiang. 2005. “Bond–slip models for FRP sheets/plates bonded to concrete.” Eng. Struct. 27 (6): 920–937. https://doi.org/10.1016/j.engstruct.2005.01.014.
Lunardelli, M., T. Leusmann, and H. Budelmann. 2016. “Improvement of debonding behavior among low strength concrete and externally bonded CFRP.” In Proc., 8th Int. Conf. on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering, edited by J. G. Teng and J. G. Dai, 85–90. Hong Kong: The Hong Kong Polytechnic University.
MATLAB. 2019. MATLAB version 2019b. Natick, MA: The Mathworks.
Mazzotti, C., M. Savoia, and B. Ferracuti. 2008. “An experimental study on delamination of FRP plates bonded to concrete.” Constr. Build. Mater. 22 (7): 1409–1421. https://doi.org/10.1016/j.conbuildmat.2007.04.009.
Mazzotti, C., M. Savoia, and B. Ferracuti. 2009. “A new single-shear set-up for stable debonding of FRP-concrete joints.” Constr. Build. Mater. 23 (4): 1529–1537. https://doi.org/10.1016/j.conbuildmat.2008.04.003.
Morshed, S. A., T. J. Young, W. M. Chirdon, Q. Zhang, and J. Tatar. 2018. “Durability of wet lay-up FRP bonded to concrete with nanomodified epoxy adhesives.” J. Adhes. 96 (13): 1141–1166. https://doi.org/10.1080/00218464.2018.1556647.
Niedermeier, R. 2000. “Zugkraftdeckung bei klebearmierten Bauteilen [Tensile force coverage of adhesively-reinforced components].” [In German.] Ph.D. thesis, Institut für Baustoffe und Konstruktion Lehrstuhl für Massivbau, Univ. of Munich.
Otsu, N. 1979. “A threshold selection method from gray-level histograms.” IEEE Trans. Syst. Man Cybern. 9 (1): 62–66. https://doi.org/10.1109/TSMC.1979.4310076.
Reinhardt, H. W., and T. Wüstholz. 2006. “About the influence of the content and composition of the aggregates on the rheological behaviour of self-compacting concrete.” Mater. Struct. 39 (7): 683–693. https://doi.org/10.1617/s11527-006-9102-3.
Rosenboom, O., and S. H. Rizkalla. 2008. “Experimental study of intermediate crack debonding in fiber-reinforced polymer strengthened beams.” ACI Struct. J. 105 (1): 41–50.
Sebastian, W. M. 2001. “Significance of midspan debonding failure in FRP-plated concrete beams.” J. Struct. Eng. 127 (7): 792–798. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(792).
Stewart, A., B. Schlosser, and E. P. Douglas. 2013. “Surface modification of cured cement pastes by silane coupling agents.” ACS Appl. Mater. Interfaces 5 (4): 1218–1225. https://doi.org/10.1021/am301967v.
Sto. 2021. “Stopox specifications for SK 41.” Retrieved June 30, 2021. https://www.stocretec.de/webdocs/0000/SDB/C%5F14173x001%5F0001%5FDE%5F01%5F00.PDF.
Subramaniam, K. V., C. Carloni, and L. Nobile. 2007. “Width effect in the interface fracture during shear debonding of FRP sheets from concrete.” Eng. Fract. Mech. 74 (4): 578–594. https://doi.org/10.1016/j.engfracmech.2006.09.002.
Täljsten, B. 1996. “Strengthening of concrete prisms using the plate-bonding technique.” Int. J. Fract. 82 (3): 253–266. https://doi.org/10.1007/BF00013161.
Tatar, J., N. R. Brenkus, G. Subhash, C. R. Taylor, and H. Hamilton. 2018. “Characterization of adhesive interphase between epoxy and cement paste via raman spectroscopy and mercury intrusion porosimetry.” Cem. Concr. Compos. 88: 187–199. https://doi.org/10.1016/j.cemconcomp.2018.01.012.
Wan, B., M. F. Petrou, and K. A. Harries. 2006. “The effect of the presence of water on the durability of bond between CFRP and concrete.” J. Reinf. Plast. Compos. 25 (8): 875–890. https://doi.org/10.1177/0731684406065140.
Wu, Y.-F., and C. Jiang. 2013. “Quantification of bond-slip relationship for externally bonded FRP-to-concrete joints.” J. Compos. Constr. 17 (5): 673–686. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000375.
Wüstholz, T. 2005. “Experimentelle und theoretische Untersuchung der Freischbetoneigenschaften von Selbstverdichtendem Beton. Experimental and theoretical investigations of the fresh properties of self-compacting concrete.” [In German.] Ph.D. thesis, Institute of Construction Materials, Univ. Stuttgart.
Yao, J., J. G. Teng, and J. F. Chen. 2005. “Experimental study on FRP-to-concrete bonded joints.” Composites, Part B 36 (2): 99–113. https://doi.org/10.1016/j.compositesb.2004.06.001.

Information & Authors

Information

Published In

Go to Journal of Composites for Construction
Journal of Composites for Construction
Volume 26Issue 5October 2022

History

Received: Jan 30, 2022
Accepted: May 10, 2022
Published online: Jul 21, 2022
Published in print: Oct 1, 2022
Discussion open until: Dec 21, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Matteo Lunardelli [email protected]
Institute of Building Materials, Concrete Construction and Fire Safety, Division of Building Materials, Technische Univ. Braunschweig, Beethovenstr. 52, 38106 Braunschweig, Germany (corresponding author). Email: [email protected]
Thorsten Leusmann [email protected]
Post Doc, Institute of Building Materials, Concrete Construction and Fire Safety, Division of Building Materials, Technische Univ. Braunschweig, Beethovenstr. 52, 38106 Braunschweig, Germany. Email: [email protected]
Full Professor, Institute of Building Materials, Concrete Construction and Fire Safety, Division of Building Materials, Technische Univ. Braunschweig, Beethovenstr. 52, 38106 Braunschweig, Germany. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share