Technical Papers
May 26, 2021

Effect of Size on Eccentric Compression Behavior of CFRP-Confined RC Columns: Experimental and Numerical Investigation

Publication: Journal of Composites for Construction
Volume 25, Issue 4

Abstract

Few studies have investigated the eccentric compression behavior of fiber-reinforced polymer (FRP) confined reinforced concrete (RC) columns. In particular, the studies on the eccentrically loaded large-sized FRP-confined RC columns are limited. In this study, the mechanical responses and size effect behavior of FRP-confined RC square columns under eccentric loading will be investigated experimentally and numerically. Nine carbon fiber–reinforced polymer (CFRP) confined columns and three control columns with cross-sectional widths (h) from 200 to 600 mm will be tested, in which the influence of the structural size and eccentricity ratio (e/h0) will be studied. The failure patterns, load–deflection responses, and nominal stress–strain curves of CFRP and longitudinal reinforcement will be presented. The nominal axial strength and corresponding lateral deflection of tested CFRP-confined RC columns size effect existed. Subsequently, a finite-element (FE) model was developed and verified, in which the mesoscale structure of the concrete was considered. The experimental results are supplemented by FE modeling with a wider range of structural sizes and e/h0. In addition, the predicted equation for nominal axial strength for eccentrically loaded CFRP-confined RC columns will be established, of which the accuracy will be verified by comparison with the experimental and numerical data.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The financial support from the National Key Basic Research and Development Program of China (No. 2018YFC1504302), and the National Natural Science Foundation of China (Nos. 51822801 and 51421005) is gratefully acknowledged.

References

ACI (American Concrete Institute). 2017. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. ACI 440.2R-17. Farmington Hills, MI: ACI.
Akogbe, R. K., M. Liang, and Z. M. Wu. 2011. “Size effect of axial compressive strength of CFRP confined concrete cylinders.” Int. J. Concr. Struct. Mater. 5 (1): 49–55. https://doi.org/10.4334/IJCSM.2011.5.1.049.
Al-Nimry, H., and M. Neqresh. 2019. “Confinement effects of unidirectional CFRP sheets on axial and bending capacities of square RC columns.” Eng. Struct. 196: 109329. https://doi.org/10.1016/j.engstruct.2019.109329.
Al-Salloum, Y. A., G. S. Al-Amri, N. A. Siddiqui, T. H. Almusallam, and H. Abbas. 2018. “Effectiveness of CFRP strengthening in improving cyclic compression response of slender RC columns.” J. Compos. Constr. 22 (3): 04018009. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000842.
ASTM. 2008. Standard test method for tensile properties of polymer matrix composite materials. ASTM D3039/D3039M-08. West Conshohocken, PA: ASTM.
Bažant, Z. P. 1984. “Size effect in blunt fracture: Concrete, rock, metal.” J. Eng. Mech. 110 (4): 518–535. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:4(518).
Bažant, Z. P., and J. Planas. 1998. Fracture and size effect in concrete and other quasibrittle materials. Boca Raton, FL: CRC Press.
Carpinteri, A., and G. Ferro. 1994. “Size effects on tensile fracture properties: A unified explanation based on disorder and fractality of concrete microstructure.” Mater. Struct. 27 (10): 563–571. https://doi.org/10.1007/BF02473124.
Carrazedo, R., and J. B. de Hanai. 2017. “Concrete prisms and cylinders wrapped by FRP loaded in compression with small eccentricities.” J. Compos. Constr. 21 (4): 04016115. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000782.
Chellapandian, M., S. S. Prakash, and A. Sharma. 2019a. “Experimental investigation of the effectiveness of hybrid FRP-strengthened RC columns on axial compression-bending interaction behavior.” J. Compos. Constr. 23 (4): 04019025. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000952.
Chellapandian, M., S. S. Prakash, and A. Sharma. 2019b. “Experimental and finite element studies on the flexural behavior of reinforced concrete elements strengthened with hybrid FRP technique.” Compos. Struct. 208: 466–478. https://doi.org/10.1016/j.compstruct.2018.10.028.
Chen, Y., P. Visintin, and D. J. Oehlers. 2016. “Extracting size-dependent stress-strain relationships from FRP-confined concrete cylinders for varying diameters and heights.” J. Mater. Civ. Eng. 28 (5): 04015182. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001482.
CNS (China National Standard). 2010. Technical code for infrastructure application of FRP composites. GB 50608-2010. Beijing: China Planning Press.
CNS (China National Standard). 2011. Code for design of concrete structures. GB 50010-2010. Beijing: China Architecture and Building Press.
Del Viso, J. R., J. R. Carmona, and G. Ruiz. 2008. “Shape and size effects on the compressive strength of high-strength concrete.” Cem. Concr. Res. 38 (3): 386–395. https://doi.org/10.1016/j.cemconres.2007.09.020.
Del Zoppo, M., M. Di Ludovico, A. Balsamo, A. Prota, and G. Manfredi. 2017. “FRP for seismic strengthening of shear controlled RC columns: Experience from earthquakes and experimental analysis.” Composites, Part B 129: 47–57. https://doi.org/10.1016/j.compositesb.2017.07.028.
Du, X., L. Jin, and G. Ma. 2013. “A meso-scale analysis method for the simulation of nonlinear damage and failure behavior of reinforced concrete members.” Int. J. Damage Mech. 22 (6): 878–904. https://doi.org/10.1177/1056789512468915.
Duan, K., X. Hu, and F. H. Wittmann. 2006. “Scaling of quasi-brittle fracture: Boundary and size effect.” Mech. Mater. 38 (1–2): 128–141. https://doi.org/10.1016/j.mechmat.2005.05.016.
Elsanadedy, H. M., Y. A. Al-Salloum, S. H. Alsayed, and R. A. Iqbal. 2012. “Experimental and numerical investigation of size effects in FRP-wrapped concrete columns.” Constr. Build. Mater. 29 (1): 56–72. https://doi.org/10.1016/j.conbuildmat.2011.10.025.
El-Sokkary, H., and K. Galal. 2019. “Performance of eccentrically loaded reinforced-concrete masonry columns strengthened using FRP wraps.” J. Compos. Constr. 23 (5): 04019032. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000958.
GAQSIQ (General Administration of Quality Supervision, Inspection and Quarantine). 2010. Metallic materials-tensile testing-part 1: Method of test at room temperature. GB/T 228.1-2010. Beijing: GAQSIQ.
Genikomsou, A. S., and M. A. Polak. 2015. “Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS.” Eng. Struct. 98: 38–48. https://doi.org/10.1016/j.engstruct.2015.04.016.
Grondin, F., and M. Matallah. 2014. “How to consider the interfacial transition zones in the finite element modelling of concrete?” Cem. Concr. Res. 58: 67–75. https://doi.org/10.1016/j.cemconres.2014.01.009.
Guo, Y. C., W. Y. Gao, J. J. Zeng, Z. J. Duan, X. Y. Ni, and K. D. Peng. 2019. “Compressive behavior of FRP ring-confined concrete in circular columns: Effects of specimen size and a new design-oriented stress-strain model.” Constr. Build. Mater. 201: 350–368. https://doi.org/10.1016/j.conbuildmat.2018.12.183.
Hadi, M. N. S. 2006. “Behaviour of FRP wrapped normal strength concrete columns under eccentric loading.” Compos. Struct. 72 (4): 503–511. https://doi.org/10.1016/j.compstruct.2005.01.018.
Hadi, M. N. S. 2007. “Behaviour of FRP strengthened concrete columns under eccentric compression loading.” Compos. Struct. 77 (1): 92–96. https://doi.org/10.1016/j.compstruct.2005.06.007.
Hadi, M. N. S. 2009. “Behaviour of eccentric loading of FRP confined fibre steel reinforced concrete columns.” Constr. Build. Mater. 23 (2): 1102–1108. https://doi.org/10.1016/j.conbuildmat.2008.05.024.
Hadi, M. N. S., and I. B. R. Widiarsa. 2012. “Axial and flexural performance of square RC columns wrapped with CFRP under eccentric loading.” J. Compos. Constr. 16 (6): 640–649. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000301.
Hu, X., J. Guan, Y. Wang, A. Keating, and S. Yang. 2017. “Comparison of boundary and size effect models based on new developments.” Eng. Fract. Mech. 175: 146–167. https://doi.org/10.1016/j.engfracmech.2017.02.005.
Jamatia, R., and A. Deb. 2017. “Size effect in FRP-confined concrete under axial compression.” J. Compos. Constr. 21 (6): 04017045. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000825.
Jiang, C., and Y. F. Wu. 2020. “Axial strength of eccentrically loaded FRP-confined short concrete columns.” Polymers 12 (6): 1261. https://doi.org/10.3390/polym12061261.
Jin, L., D. Li, X. Du, A. Lu, and Z. Ding. 2017. “Experimental and numerical study on size effect in eccentrically loaded stocky RC columns.” J. Struct. Eng. 143 (2): 04016170. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001655.
Jin, L., X. Li, L. Fan, and X. Du. 2020. “Size effect on compressive strength of GFRP-confined concrete columns: Numerical simulation.” J. Compos. Constr. 24 (5): 04020038. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001041.
Jin, L., T. Wang, X. Jiang, and X. Du. 2019. “Size effect in shear failure of RC beams with stirrups: Simulation and formulation.” Eng. Struct. 199: 109573. https://doi.org/10.1016/j.engstruct.2019.109573.
Jumaa, G. B., and A. R. Yousif. 2019. “Size effect on the shear failure of high-strength concrete beams reinforced with basalt FRP bars and stirrups.” Constr. Build. Mater. 209: 77–94. https://doi.org/10.1016/j.conbuildmat.2019.03.076.
Kalfat, R., R. Al-Mahaidi, and S. T. Smith. 2013. “Anchorage devices used to improve the performance of reinforced concrete beams retrofitted with FRP composites: State-of-the-art review.” J. Compos. Constr. 17 (1): 14–33. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000276.
Kim, J. K., S. T. Yi, C. K. Park, and S. H. Eo. 1999. “Size effect on compressive strength of plain and spirally reinforced concrete cylinders.” ACI Struct. J. 96: 88–94.
Kim, S. M., and R. K. A. Al-Rub. 2011. “Meso-scale computational modeling of the plastic-damage response of cementitious composites.” Cem. Concr. Res. 41 (3): 339–358. https://doi.org/10.1016/j.cemconres.2010.12.002.
Korol, E., J. Tejchman, and Z. Mroz. 2017. “Experimental and numerical assessment of size effect in geometrically similar slender concrete beams with basalt reinforcement.” Eng. Struct. 141: 272–291. https://doi.org/10.1016/j.engstruct.2017.03.011.
Lagier, F., B. Massicotte, and J. P. Charron. 2016. “3D nonlinear finite-element modeling of lap splices in UHPFRC.” J. Struct. Eng. 142 (11): 04016087. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001549.
Lam, L., and J. G. Teng. 2002. “Strength models for fiber-reinforced plastic-confined concrete.” J. Struct. Eng. 128 (5): 612–623. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:5(612).
Lee, J., and G. L. Fenves. 1998. “Plastic-damage model for cyclic loading of concrete structures.” J. Eng. Mech. 124 (8): 892–900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892).
Lin, G., and J. G. Teng. 2017. “Three-dimensional finite-element analysis of FRP-confined circular concrete columns under eccentric loading.” J. Compos. Constr. 21 (4): 04017003. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000772.
Lin, G., J. J. Zeng, J. G. Teng, and L. J. Li. 2020. “Behavior of large-scale FRP-confined rectangular RC columns under eccentric compression.” Eng. Struct. 216: 110759. https://doi.org/10.1016/j.engstruct.2020.110759.
Lubliner, J., J. Oliver, S. Oller, and E. Onate. 1989. “A plastic-damage model for concrete.” Int. J. Solids Struct. 25 (3): 299–326. https://doi.org/10.1016/0020-7683(89)90050-4.
MHURD (Ministry of Housing and Urban-Rural Development). 2014. Code for design of concrete filled steel tubular structures. GB50936-2014. Beijing: China Architecture and Building Press.
Ozbakkaloglu, T., J. C. Lim, and T. Vincent. 2013. “FRP-confined concrete in circular sections: Review and assessment of stress–strain models.” Eng. Struct. 49: 1068–1088. https://doi.org/10.1016/j.engstruct.2012.06.010.
Parvin, A., and W. Wang. 2001. “Behavior of FRP jacketed concrete columns under eccentric loading.” J. Compos. Constr. 5 (3): 146–152. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:3(146).
Pour, A. F., A. Gholampour, J. Zheng, and T. Ozbakkaloglu. 2019. “Behavior of FRP-confined high-strength concrete under eccentric compression: Tests on concrete-filled FRP tube columns.” Compos. Struct. 220: 261–272. https://doi.org/10.1016/j.compstruct.2019.03.031.
Rangari, S., K. Murali, and A. Deb. 2018. “Effect of meso-structure on strength and size effect in concrete under compression.” Eng. Fract. Mech. 195: 162–185. https://doi.org/10.1016/j.engfracmech.2018.04.006.
Ribeiro, F., J. Sena-Cruz, F. G. Branco, and E. Júlio. 2019. “3D finite element model for hybrid FRP-confined concrete in compression using modified CDPM.” Eng. Struct. 190: 459–479. https://doi.org/10.1016/j.engstruct.2019.04.027.
Sadeghian, P., A. R. Rahai, and M. R. Ehsani. 2010. “Experimental study of rectangular RC columns strengthened with CFRP composites under eccentric loading.” J. Compos. Constr. 14 (4): 443–450. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000100.
Şener, S., B. I. G. Barr, and H. F. Abusiaf. 2004. “Size effect in axially loaded reinforced concrete columns.” J. Struct. Eng. 130 (4): 662–670. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:4(662).
Song, X., X. Gu, Y. Li, T. Chen, and W. Zhang. 2013. “Mechanical behavior of FRP-strengthened concrete columns subjected to concentric and eccentric compression loading.” J. Compos. Constr. 17 (3): 336–346. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000351.
Song, Z., and Y. Lu. 2012. “Mesoscopic analysis of concrete under excessively high strain rate compression and implications on interpretation of test data.” Int. J. Impact Eng. 46: 41–55. https://doi.org/10.1016/j.ijimpeng.2012.01.010.
Teng, J. G., and L. Lam. 2002. “Compressive behavior of carbon fiber reinforced polymer-confined concrete in elliptical columns.” J. Struct. Eng. 128 (12): 1535–1543. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:12(1535).
Theriault, M., K. W. Neale, and S. Claude. 2004. “Fiber-reinforced polymer-confined circular concrete columns: Investigation of size and slenderness effects.” J. Compos. Constr. 8 (4): 323–331. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:4(323).
Wang, D. Y., Z. Y. Wang, S. T. Smith, and T. Yu. 2016. “Size effect on axial stress-strain behavior of CFRP-confined square concrete columns.” Constr. Build. Mater. 118: 116–126. https://doi.org/10.1016/j.conbuildmat.2016.04.158.
Wang, Y., P. Chen, C. Liu, and Y. Zhang. 2017. “Size effect of circular concrete-filled steel tubular short columns subjected to axial compression.” Thin-Walled Struct. 120: 397–407. https://doi.org/10.1016/j.tws.2017.09.010.
Wang, Y. F., and H. L. Wu. 2011. “Size effect of concrete short columns confined with aramid FRP jackets.” J. Compos. Constr. 15 (4): 535–544. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000178.
Wei, Y. Y., and Y. F. Wu. 2012. “Unified stress-strain model of concrete for FRP-confined columns.” Constr. Build. Mater. 26 (1): 381–392. https://doi.org/10.1016/j.conbuildmat.2011.06.037.
Weibull, W. 1951. “A statistical distribution function of wide applicability.” J. Appl. Mech. 18 (3): 293–297. https://doi.org/10.1115/1.4010337.
Wriggers, P., and S. Moftah. 2006. “Mesoscale models for concrete: Homogenisation and damage behaviour.” Finite Elem. Anal. Des. 42 (7): 623–636. https://doi.org/10.1016/j.finel.2005.11.008.
Wu, Y. F., and C. Jiang. 2013. “Effect of load eccentricity on the stress-strain relationship of FRP-confined concrete columns.” Compos. Struct. 98: 228–241. https://doi.org/10.1016/j.compstruct.2012.11.023.
Xing, L., G. Lin, and J. F. Chen. 2020. “Behavior of FRP-confined circular RC columns under eccentric compression.” J. Compos. Constr. 24 (4): 04020030. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001036.
Xiong, Q., X. Wang, and A. P. Jivkov. 2020. “A 3D multi-phase meso-scale model for modelling coupling of damage and transport properties in concrete.” Cem. Concr. Compos. 109: 103545. https://doi.org/10.1016/j.cemconcomp.2020.103545.
Youcef, Y. S., S. Amziane, and M. Chemrouk. 2015. “CFRP confinement effectiveness on the behavior of reinforced concrete columns with respect to buckling instability.” Constr. Build. Mater. 81: 81–92. https://doi.org/10.1016/j.conbuildmat.2015.02.006.
Youssef, M. N., M. Q. Feng, and A. S. Mosallam. 2007. “Stress-strain model for concrete confined by FRP composites.” Composites, Part B 38 (5–6): 614–628. https://doi.org/10.1016/j.compositesb.2006.07.020.
Yuan, F., Y. F. Wu, and C. Q. Li. 2017. “Modelling plastic hinge of FRP-confined RC columns.” Eng. Struct. 131: 651–668. https://doi.org/10.1016/j.engstruct.2016.10.018.
Zeng, J. J., G. Lin, J. G. Teng, and L. J. Li. 2018. “Behavior of large-scale FRP-confined rectangular RC columns under axial compression.” Eng. Struct. 174: 629–645. https://doi.org/10.1016/j.engstruct.2018.07.086.
Zhao, X., H. Liang, Y. Lu, and P. Zhao. 2020. “Size effect of square steel tube and sandwiched concrete jacketed circular RC columns under axial compression.” J. Constr. Steel Res. 166: 105912. https://doi.org/10.1016/j.jcsr.2019.105912.
Zhou, J., F. Bi, Z. Wang, and J. Zhang. 2016a. “Experimental investigation of size effect on mechanical properties of carbon fiber reinforced polymer (CFRP) confined concrete circular specimens.” Constr. Build. Mater. 127: 643–652. https://doi.org/10.1016/j.conbuildmat.2016.10.039.
Zhou, X., J. Liu, X. Wang, and Y. F. Chen. 2016b. “Behavior and design of slender circular tubed-reinforced-concrete columns subjected to eccentric compression.” Eng. Struct. 124: 17–28. https://doi.org/10.1016/j.engstruct.2016.05.036.

Information & Authors

Information

Published In

Go to Journal of Composites for Construction
Journal of Composites for Construction
Volume 25Issue 4August 2021

History

Received: Nov 12, 2020
Accepted: Mar 19, 2021
Published online: May 26, 2021
Published in print: Aug 1, 2021
Discussion open until: Oct 26, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing Univ. of Technology, Beijing 100124, China. Email: [email protected]
Postgraduate, Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing Univ. of Technology, Beijing 100124, China. Email: [email protected]
Professor, School of Civil and Transportation Engineering, Beijing Univ. of Civil Engineering and Architecture, Beijing 100124, China (corresponding author). Email: [email protected]
Professor, Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing Univ. of Technology, Beijing 100124, China. ORCID: https://orcid.org/0000-0001-6646-0526. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share