Technical Papers
Oct 23, 2020

Confining Stress Path-Based Compressive Strength Model of Axially Loaded FRP-Confined Columns

Publication: Journal of Composites for Construction
Volume 25, Issue 1

Abstract

The accuracy of existing compressive strength models for fiber–reinforced polymer (FRP)-confined concrete might vary significantly since most of them were established empirically, without a clear understanding of the confinement mechanisms. Previous studies have suggested that the compressive behavior of confined concrete depends on its confining stress path. However, the confining stress path of FRP-confined concrete and its corresponding effect on the behavior of FRP-confined concrete has not been investigated, to the best of the authors’ knowledge. In this paper, the confinement mechanism of FRP-confined concrete will be investigated for the first time by investigating the confining stress path and the relationship between the confining stress path and the compressive strength of FRP-confined concrete. The results indicate that the FRP-confined concrete that has different column parameters generally yields different confining stress paths, which leads to different compressive strengths. The influence of the confining stress paths on the compressive strength was observed to be less significant for the specimen that was confined by a stress path with a larger lateral stress dominant index. Based on the theoretical and experimental results of this paper, a confining stress path-based compressive strength model will be developed for FRP-confined concrete. The developed model yielded more accurate predictions than existing models based on the results of this paper and previous tests.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This research was partially supported by the National Science Foundation of China (Grant Nos. 51738001 and 51820105014). The support is gratefully acknowledged.

Notation

The following symbols are used in this paper:
A
sectional area of FRP-confined concrete;
D
diameter of concrete core;
Ef
elastic modulus of FRP jacket;
Ec
elastic modulus of concrete;
fru
nominal ultimate lateral stress of FRP-confined concrete;
ft
ultimate tensile strength of flat FRP coupon;
fc
compressive strength of unconfined concrete (150 mm × 300 mm cylinder);
fc0
reported concrete strengths;
fcu150
150 mm cube concrete strength;
fcc_pre
predicted compressive strength of FRP-confined concrete;
fcc_exp
measured compressive strength of FRP-confined concrete;
fcc
compressive strength of FRP-confined concrete;
fac
compressive strength of actively confined concrete;
ke
strain efficiency factor;
N
axial load of FRP-confined concrete;
S(Pi)
area enclosed by path Pi and its lower limit path Pi,low;
S(Pi,up)
area enclosed by path Pi,up and its lower limit path Pi,low;
SI
lateral stress dominant index;
t
FRP jacket thickness;
Δf(Pa, σru)
increased strength of confined concrete under path Pa;
Δf(Pi, σru)
increased strength of confined concrete under path Pi;
ɛfu
ultimate tensile strain of flat FRP coupon;
ɛm
volumetric strain of FRP-confined concrete;
ɛrc
lateral strain of FRP-confined concrete;
ɛrup
measured in situ rupture strain of FRP jacket;
ɛzc
axial strain of FRP-confined concrete;
ɛθc
hoop strain of FRP-confined concrete;
ɛθf
hoop strain of FRP jacket;
λ(Pi)
effect index;
υc
Poisson's ratio of concrete;
σrc
lateral stress of FRP-confined concrete;
σru
ultimate lateral stress of confined concrete;
σzc
axial stress of FRP-confined concrete;
σθc
hoop stress of FRP-confined concrete; and
σθf
hoop stress of FRP jacket.

References

ACI (American Concrete Institute). 2019. Building code requirements for structural concrete (ACI 318-19) and commentary. Farmington Hills, MI: ACI.
Ahmad, S. M., A. R. Khaloo, and A. Irshaid. 1991. “Behaviour of concrete spirally confined by fibreglass filaments.” Mag. Concr. Res. 43 (56): 143–148. https://doi.org/10.1680/macr.1991.43.156.143.
Aire, C., R. Gettu, J. R. Casas, S. Marques, and D. Marques. 2010. “Concrete laterally confined with fibre-reinforced polymers (FRP): Experimental study and theoretical model.” Mater. Constr. 60 (297): 19–31. https://doi.org/10.3989/mc.2010.45608.
Akogbe, R. K., M. Liang, and Z. M. Wu. 2011. “Size effect of axial compressive strength of CFRP confined concrete cylinders.” Int. J. Concr. Struct. Mater. 5 (1): 49–55. https://doi.org/10.4334/IJCSM.2011.5.1.049.
Almusallam, T. H. 2007. “Behavior of normal and high-strength concrete cylinders confined with E-glass/epoxy composite laminates.” Composites, Part B 38 (5–6): 629–639. https://doi.org/10.1016/j.compositesb.2006.06.021.
Arduini, M., A. Di Tommaso, O. Manfroni, S. Ferrari, and M. Romagnolo. 1999. “Il Confinamento Passivo di Elementi Compressi in Calcestruzzo con Fogli di Materiale Composito.” Ind. Ital. Cem. 1: 836–841.
Bažant, Z. P., and T. Tsubaki. 1980. “Total strain theory and path dependence of concrete.” J. Eng. Mech. Div. 106 (6): 1151–1173.
Benzaid, R., H. Mesbah, and N. E. Chikh. 2010. “FRP-confined concrete cylinders: Axial compression experiments and strength model.” J. Reinf. Plast. Compos. 29 (16): 2469–2488. https://doi.org/10.1177/0731684409355199.
Berthet, J. F., E. Ferrier, and P. Hamelin. 2005. “Compressive behavior of concrete externally confined by composite jackets. Part A: Experimental study.” Constr. Build. Mater. 19 (3): 223–232. https://doi.org/10.1016/j.conbuildmat.2004.05.012.
Bortolotti, L., S. Lai, S. Carta, and D. Cireddu. 1999. “Comportamento a carico assiale di conglomerati ad alta resistenza confinati con tessuto di fibra di carbonio.” Atti delle Giornate AICAP 99 (1): 5–14.
Bullo, S. 2003. “Experimental study of the effects of the ultimate strain of fiber reinforced plastic jackets on the behavior of confined concrete.” In Proc., 2nd Int. Conf. on Composites in Construction, edited by D. Bruno, G. Spadea, and R. N. Swamy, 465–470. Cosenza, Italy: University of Calabria.
Campione, G., and N. Miraglia. 2003. “Strength and strain capacities of concrete compression members reinforced with FRP.” Cem. Concr. Compos. 25 (1): 31–41. https://doi.org/10.1016/S0958-9465(01)00048-8.
Carey, S. A., and K. A. Harries. 2005. “Axial behavior and modeling of small-, medium-, and large-scale cylindrical sections confined with CFRP jackets.” ACI Struct. J. 102 (4): 596–604.
Chen, G. M., J. J. Zhang, T. Jiang, C. J. Lin, and Y. H. He. 2018a. “Compressive behavior of CFRP-confined recycled aggregate concrete in different-sized circular sections.” J. Compos. Constr. 22 (4): 04018021. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000859.
Chen, P., Y. Y. Wang, and C. Y. Liu. 2018b. “Confining stress path-dependent analytical model for FRP-confined concrete and concrete-filled steel tube subjected to axial compression.” Compos. Struct. 201: 234–247. https://doi.org/10.1016/j.compstruct.2018.06.008.
Ciupala, M. A., K. Pilakoutas, and A. A. Mortazavi. 2007. “Effectiveness of FRP composites in confined concrete.” In Proc., FRPRCS-8 Int. Sym., 1–10. Patras, Greece: University of Patras.
Cui, C., and S. A. Sheikh. 2010. “Experimental study of normal- and high-strength concrete confined with fiber-reinforced polymers.” J. Compos. Constr. 14 (5): 553–561. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000116.
De Lorenzis, L., F. Micelli, and A. La Tegola. 2002. “Influence of specimen size and resin type on the behavior of FRP-confined concrete cylinders.” In Advanced Polymer Composites for Structural Applications in Construction, Proc., 1st Int. Conf., 231–239. London: Thomas Telford.
De Lorenzis, L., and R. Tepfers. 2003. “Comparative study of models on confinement of concrete cylinders with fiber-reinforced polymer composites.” J. Compos. Constr. 7 (3): 219–237. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:3(219).
De Luca, A., F. Nardone, F. Matta, A. Nanni, G. Lignola, and A. Prota. 2011. “Structural evaluation of full-scale FRP-confined reinforced concrete columns.” J. Compos. Constr. 15 (1): 112–123. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000152.
Demers, M., and K. W. Neale. 1994. “Strengthening of concrete columns with unidirectional composite sheets.” In Proc., 4th Int. Conf. on Short and Medium Span Bridges, edited by A. Mufti, B. Bakht, and L. G. Jaeger, 895–905. Montreal, Canada: Canadian Society for Civil Engineering.
Faella, C., R. Realfonzo, and N. Salerno. 2004. “Sulla resistenza e deformazione di elementi in c.a. confinati con tessuti in FRP.” In Proc., XI Congresso Nazionale L’ingegneria Sismica in Italia, Genova, Italia. [in Italian.].
Guler, S. 2014. “Axial behavior of FRP-wrapped circular ultra-high performance concrete specimens.” Struct. Eng. Mech. 50 (6): 709–722. https://doi.org/10.12989/sem.2014.50.6.709.
Guo, Y. C., J. H. Xie, Z. H. Xie, and J. Zhong. 2016. “Experimental study on compressive behavior of damaged normal- and high-strength concrete confined with CFRP laminates.” Constr. Build. Mater. 107: 411–425. https://doi.org/10.1016/j.conbuildmat.2016.01.010.
Harmon, T. G., and K. T. Slattery. 1992. “Advanced composite confinement of concrete.” In Proc., 1st Int. Conf. on Advanced Composite Materials in Bridges and Structures, 299–306. Sherbrooke, Canada: Canadian Society for Civil Engineering.
Harries, K. A., and S. A. Carey. 2003. “Shape and “gap” effects on the behavior of variably confined concrete.” Cem. Concr. Res. 33 (6): 881–890. https://doi.org/10.1016/S0008-8846(02)01085-2.
Harries, K. A., and G. Kharel. 2003. “Experimental investigation of the behavior of variably confined concrete.” Cem. Concr. Res. 33 (6): 873–880. https://doi.org/10.1016/S0008-8846(02)01086-4.
Howie, I., and V. M. Karbhari. 1995. “Effect of tow sheet composite wrap architecture on strengthening of concrete due to confinement. I: Experimental studies.” J. Reinf. Plast. Compos. 14 (9): 1008–1030. https://doi.org/10.1177/073168449501400906.
Jamatia, R., and A. Deb. 2017. “Size effect in FRP-confined concrete under axial compression.” J. Compos. Constr. 21 (6): 04017045. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000825.
Karabinis, A. I., and T. C. Rousakis. 2002. “Concrete confined by FRP material: A plasticity approach.” Eng. Struct. 24 (7): 923–932. https://doi.org/10.1016/S0141-0296(02)00011-1.
Karbhari, V. M., and Y. Q. Gao. 1997. “Composite jacketed concrete under uniaxial compression—Verification of simple design equations.” J. Mater. Civ. Eng., 185–193. https://doi.org/10.1061/(ASCE)0899-1561(1997)9:4(185).
Kono, S., M. Inazuni, and T. Kaku. 1998. “Evaluation of confining effects of CFRP sheets on reinforced concrete members.” In Proc., 2nd Int. Conf. on Composites in Infrastructure, 343–355. Tucson, AZ: University of Arizona.
Kotsovos, M. D. 1979. “Effect of stress path on the behavior of concrete under triaxial stress states.” ACI Struct. J. 76 (2): 213–223.
Kshirsagar, S., R. A. Lopez-Anido, and R. K. Gupta. 2000. “Environmental aging of fiber-reinforced polymer-wrapped concrete cylinders.” ACI Mater. J. 97 (6): 703–712.
Lai, M. H., Y. W. Liang, Q. Wang, F. M. Ren, M. T. Chen, and J. C. M. Ho. 2020. “A stress-path dependent stress-strain model for FRP-confined concrete.” Eng. Struct. 203: 109824. https://doi.org/10.1016/j.engstruct.2019.109824.
Lam, L., and J. G. Teng. 2002. “Strength models for fiber-reinforced plastic-confined concrete.” J. Struct. Eng. 128 (5): 612–623. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:5(612).
Lam, L., and J. G. Teng. 2003. “Design-oriented stress-strain model for FRP-confined concrete.” Constr. Build. Mater. 17 (6–7): 471–489. https://doi.org/10.1016/S0950-0618(03)00045-X.
Lam, L., and J. G. Teng. 2004. “Ultimate condition of FRP-confined concrete.” J. Compos. Constr. 8 (6): 539–548. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:6(539).
Lam, L., J. G. Teng, C. H. Cheung, and Y. Xiao. 2006. “FRP-confined concrete under cyclic axial compression.” Cem. Concr. Compos. 28 (10): 948–958. https://doi.org/10.1016/j.cemconcomp.2006.07.007.
L’Hermite, R. 1955. Idées actualles sur la technologie du béton. Paris: Documentation Technique du Bâtiment et des Travaux Publics.
Li, G. Q. 2006. “Experimental study of FRP confined concrete cylinders.” Eng. Struct. 28 (7): 1001–1008. https://doi.org/10.1016/j.engstruct.2005.11.006.
Lim, J. C., and T. Ozbakkaloglu. 2014. “Confinement model for FRP-confined high-strength concrete.” J. Compos. Constr. 18 (4): 04013058. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000376.
Lim, J. C., and T. Ozbakkaloglu. 2015. “Investigation of the influence of the application path of confining pressure: Tests on actively confined and FRP-confined concretes.” J. Struct. Eng. 141 (8): 04014203. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001177.
Lin, C., and Y. Li. 2003. “An effective peak stress formula for concrete confined with carbon fibre reinforced plastics.” Can. J. Civ. Eng. 30 (5): 882–889. https://doi.org/10.1139/l03-047.
Lin, H. J., and C. I. Liao. 2004. “Compressive strength of reinforced concrete column confined by composite material.” Compos. Struct. 65 (2): 239–250. https://doi.org/10.1016/j.compstruct.2003.11.001.
Lin, S. Q., Y. G. Zhao, and L. S. He. 2018. “Stress paths of confined concrete in axially loaded circular concrete-filled steel tube stub columns.” Eng. Struct. 173: 1019–1028. https://doi.org/10.1016/j.engstruct.2018.06.112.
Ma, G., H. Li, L. B. Yan, and L. Huang. 2018. “Testing and analysis of basalt FRP-confined damaged concrete cylinders under axial compression loading.” Constr. Build. Mater. 169: 762–774. https://doi.org/10.1016/j.conbuildmat.2018.02.172.
Mandal, S., A. Hoskin, and A. Fam. 2005. “Influence of concrete strength on confinement effectiveness of fiber-reinforced polymer circular jackets.” ACI Struct. J. 102 (3): 383–392.
Mastrapa, J. C. 1997. “Effect of construction bond on confinement with fiber composites.” M.Sc. thesis, Dept. of Civil and Environmental Engineering, Univ. of Central Florida.
Matthys, S., L. Taerwe, and K. Audenaert. 1999. “Tests on axially loaded concrete columns confined by fiber reinforced polymer sheet wrapping.” In Vol. 188 of Proc., 4th Int. Symp. on Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures, 217–229. Farmington Hills, MI: ACI.
Matthys, S., H. Toutanji, K. Audenaert, and L. Taerwe. 2005. “Axial load behavior of large-scale columns confined with fiber-reinforced polymer composites.” ACI Struct. J. 102 (2): 258–267.
Micelli, F., and R. Modarelli. 2013. “Experimental and analytical study on properties affecting the behaviour of FRP-confined concrete.” Composites, Part B 45 (1): 1420–1431. https://doi.org/10.1016/j.compositesb.2012.09.055.
Micelli, F., J. J. Myers, and S. Murthy. 2001. “Effect of environmental cycles on concrete cylinders confined with FRP.” In Proc., Int. Conf. on Composites in Constructions, 317–322. Lisse, Netherlands: A.A. Balkema Publishers.
Mirmiran, A., M. Shahawy, M. Samaan, H. El Echary, J. C. Mastrapa, and O. Pico. 1998. “Effect of column parameters on FRP-confined concrete.” J. Compos. Constr. 2 (4): 175–185. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(175).
Miyauchi, K., S. Inoue, T. Kuroda, and A. Kobayashi. 1999. “Strengthening effects of concrete columns with carbon fiber sheet.” Trans. Jpn. Concr. Inst. 21: 143–150.
Miyauchi, K., S. Nishibayashi, and S. Inoue. 1997. “Estimation of strengthening effects with carbon fiber sheet for concrete column.” In Proc., 3rd Int. Symp. on Non-Metallic (FRP) Reinforcement for Concrete Structures, 217–224. Sapporo, Japan: Japan Concrete Institute.
Nanni, A., and N. M. Bradford. 1995. “FRP jacketed concrete under uniaxial compression.” Constr. Build. Mater. 9 (2): 115–124. https://doi.org/10.1016/0950-0618(95)00004-Y.
Ozbakkaloglu, T. 2013. “Compressive behavior of concrete-filled FRP tube columns: Assessment of critical column parameters.” Eng. Struct. 51: 188–199. https://doi.org/10.1016/j.engstruct.2013.01.017.
Ozbakkaloglu, T., and E. Akin. 2012. “Behavior of FRP-confined normal- and high-strength concrete under cyclic axial compression.” J. Compos. Constr. 16 (4): 451–463. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000273.
Ozbakkaloglu, T., J. C. Lim, and T. Vincent. 2013. “FRP-confined concrete in circular sections: Review and assessment of stress–strain models.” Eng. Struct. 49: 1068–1088. https://doi.org/10.1016/j.engstruct.2012.06.010.
Ozbakkaloglu, T., and T. Vincent. 2014. “Axial compressive behavior of circular high-strength concrete-filled FRP tubes.” J. Compos. Constr. 18 (2): 04013037. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000410.
Pessiki, S., K. A. Harries, J. T. Kestner, R. Sause, and J. M. Ricles. 2001. “Axial behavior of reinforced concrete columns confined with FRP jackets.” J. Compos. Constr. 5 (4): 237–245. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:4(237).
Pham, T. M., and M. N. S. Hadi. 2014. “Confinement model for FRP confined normal- and high-strength concrete circular columns.” Constr. Build. Mater. 69: 83–90. https://doi.org/10.1016/j.conbuildmat.2014.06.036.
Pour, A. F., T. Ozbakkaloglu, and T. Vincent. 2018. “Simplified design-oriented axial stress-strain model for FRP-confined normal- and high-strength concrete.” Eng. Struct. 175: 501–516. https://doi.org/10.1016/j.engstruct.2018.07.099.
Realfonzo, R., and A. Napoli. 2011. “Concrete confined by FRP systems: Confinement efficiency and design strength models.” Composites, Part B 42 (4): 736–755. https://doi.org/10.1016/j.compositesb.2011.01.028.
Rochette, P., and P. Labossiere. 2000. “Axial testing of rectangular column models confined with composites.” J. Compos. Constr. 4 (3): 129–136. https://doi.org/10.1061/(ASCE)1090-0268(2000)4:3(129).
Rousakis, T. 2001. Experimental investigation of concrete cylinders confined by carbon FRP sheets under monotonic and cyclic axial compressive load. Research report. Göteborg, Sweden: Chalmers Univ. of Technology.
Rousakis, T., C. You, L. De Lorenzis, V. Tamužs, and R. Tepfers. 2003. “Concrete cylinders confined by carbon FRP sheets subjected to monotonic and cyclic axial compressive load.” In Proc., 6th Int. Symp. on Fibre Reinforced Polymer Reinforcement for Concrete Structure, edited by K. H. Tan. 571–580. https://doi.org/10.1142/5300.
Rousakis, T. C. 2018. “Inherent seismic resilience of RC columns externally confined with nonbonded composite ropes.” Composites, Part B 135: 142–148. https://doi.org/10.1016/j.compositesb.2017.10.023.
Rousakis, T. C., G. D. Panagiotakis, E. E. Archontaki, and A. K. Kostopoulos. 2019. “Prismatic RC columns externally confined with FRP sheets and pre-tensioned basalt fiber ropes under cyclic axial load.” Composites, Part B 163: 96–106. https://doi.org/10.1016/j.compositesb.2018.11.024.
Sadeghian, P., and A. Fam. 2015. “Improved design-oriented confinement models for FRP-wrapped concrete cylinders based on statistical analyses.” Eng. Struct. 87: 162–182. https://doi.org/10.1016/j.engstruct.2015.01.024.
Sakino, K., H. Nakahara, S. Morino, and I. Nishiyama. 2004. “Behavior of centrally loaded concrete-filled steel-tube short columns.” J. Struct. Eng. 130 (2): 180–188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180).
Sfer, D., I. Carol, R. Gettu, and G. Etse. 2002. “Study of the behavior of concrete under triaxial compression.” J. Eng. Mech. 128 (2): 156–163. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:2(156).
Shahawy, M., A. Mirmiran, and T. Beitelman. 2000. “Tests and modeling of carbon-wrapped concrete columns.” Composites, Part B 31 (6–7): 471–480. https://doi.org/10.1016/S1359-8368(00)00021-4.
Shehata, I. A. E. M., L. A. V. Carneiro, and L. C. D. Shehata. 2002. “Strength of short concrete columns confined with CFRP sheets.” Mater. Struct. 35 (1): 50–58. https://doi.org/10.1007/BF02482090.
Shehata, I. A. E. M., L. A. V. Carneiro, and L. C. D. Shehata. 2007. “Strength of confined short concrete columns.” In Proc., 8th Int. Symp. on Fiber Reinforced Polymer Reinforcement for Concrete Structures, 213–224. Patras, Greece: Univ. of Patras.
Silva, M. A. G., and C. C. Rodrigues. 2006. “Size and relative stiffness effects on compressive failure of concrete columns wrapped with glass FRP.” J. Mater. Civ. Eng. 18 (3): 334–342. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:3(334).
Smith, S. T., S. J. Kim, and H. W. Zhang. 2010. “Behavior and effectiveness of FRP wrap in the confinement of large concrete cylinders.” J. Compos. Constr. 14 (5): 573–582. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000119.
Teng, J. G., T. Yu, Y. L. Wong, and S. L. Dong. 2007. “Hybrid FRP-concrete-steel tubular columns: Concept and behaviour.” Constr. Build. Mater. 21 (4): 846–854. https://doi.org/10.1016/j.conbuildmat.2006.06.017.
Thériault, M., K. W. Neale, and S. Claude. 2004. “Fiber reinforced polymer-confined circular concrete columns: Investigation of size and slenderness effects.” J. Compos. Constr. 8 (4): 323–331. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:4(323).
Toutanji, H., M. Han, J. Gilbert, and S. Matthys. 2010. “Behavior of large-scale rectangular columns confined with FRP composites.” J. Compos. Constr. 14 (1): 62–71. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000051.
Valdmanis, V., L. De Lorenzis, T. Rousakis, and R. Tepfers. 2007. “Behaviour and capacity of CFRP-confined concrete cylinders subjected to monotonic and cyclic axial compressive load.” Struct. Conc. 8 (4): 187–200. https://doi.org/10.1680/stco.2007.8.4.187.
Vincent, T., and T. Ozbakkaloglu. 2013. “Influence of concrete strength and confinement method on axial compressive behavior of FRP confined high- and ultra high-strength concrete.” Composites, Part B 50: 413–428. https://doi.org/10.1016/j.compositesb.2013.02.017.
Vincent, T., and T. Ozbakkaloglu. 2015. “Compressive behavior of prestressed high-strength concrete-filled aramid FRP tube columns: Experimental observations.” J. Compos. Constr. 19 (6): 04015003. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000556.
Wang, L. M., and Y. F. Wu. 2008. “Effect of corner radius on the performance of CFRP-confined square concrete columns: Test.” Eng. Struct. 30 (2): 493–505. https://doi.org/10.1016/j.engstruct.2007.04.016.
Wang, W., M. N. Sheikh, A. Q. Al-Baali, and M. N. S. Hadi. 2018. “Compressive behaviour of partially FRP confined concrete: Experimental observations and assessment of the stress-strain models.” Constr. Build. Mater. 192: 785–797. https://doi.org/10.1016/j.conbuildmat.2018.10.105.
Wang, Z., D. Wang, S. T. Smith, and D. Lu. 2012. “Experimental testing and analytical modeling of CFRP-confined large cylindrical RC columns subjected to cyclic axial compression.” Eng. Struct. 40: 64–74. https://doi.org/10.1016/j.engstruct.2012.01.004.
Watanable, K., H. Nakamura, T. Honda, M. Toyoshima, M. Iso, T. Fujimaki, M. Kaneto, and N. Shirai. 1997. “Confinement effect of FRP sheet on strength and ductility of concrete cylinders under uniaxial compression.” In Proc., 3rd Int. Symp. on Non-Metallic (FRP) Reinforcement for Concrete Structures, 233–240. Sapporo, Japan: Japan Concrete Institute.
Wu, G., Z. S. Wu, Z. T. Lu, and Y. B. Ando. 2008. “Structural performance of concrete confined with hybrid FRP composites.” J. Reinf. Plast. Compos. 27 (12): 1323–1348. https://doi.org/10.1177/0731684407084989.
Wu, Y. F., and J. F. Jiang. 2013. “Effective strain of FRP for confined circular concrete columns.” Compos. Struct. 95: 479–491. https://doi.org/10.1016/j.compstruct.2012.08.021.
Xiao, Q. G., J. G. Teng, and T. Yu. 2010. “Behavior and modeling of confined high-strength concrete.” J. Compos. Constr. 14 (3): 249–259. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000070.
Xiao, Y., and H. Wu. 2000. “Compressive behavior of concrete confined by carbon fiber composite jackets.” J. Mater. Civ. Eng. 12 (2): 139–146. https://doi.org/10.1061/(ASCE)0899-1561(2000)12:2(139).
Xie, J., A. E. Elwi, and J. G. Macgregor. 1995. “Mechanical properties of three high-strength concretes containing silica fume.” ACI Mater. J. 92: 135–145.
Xiong, H. B., J. F. Jiang, and B. B. Li. 2016. “Load path dependence of strain and stress for confined concrete.” Mag. Concr. Res. 68 (12): 604–618. https://doi.org/10.1680/jmacr.15.00175.
Youssef, M. N., M. Q. Feng, and A. S. Mosallam. 2007. “Stress–strain model for concrete confined by FRP composites.” Composites, Part B 38 (5–6): 614–628. https://doi.org/10.1016/j.compositesb.2006.07.020.
Zeng, J. J., Y. C. Guo, W. Y. Gao, W. P. Chen, and L. J. Li. 2018. “Stress-strain behavior of concrete in circular concrete columns partially wrapped with FRP strips.” Compos. Struct. 200: 810–828. https://doi.org/10.1016/j.compstruct.2018.05.001.
Zeng, J. J., Y. C. Guo, W. Y. Gao, J. Z. Li, and J. H. Xie. 2017. “Behavior of partially and fully FRP-confined circularized square columns under axial compression.” Constr. Build. Mater. 152: 319–332. https://doi.org/10.1016/j.conbuildmat.2017.06.152.
Zhang, S., L. Ye, and Y. W. Mai. 2000. “Study on polymer composite strengthening systems for concrete columns.” Appl. Compos. Mater. 7 (2/3): 125–138. https://doi.org/10.1023/A:1008917922156.
Zhao, J. L., T. Yu, and J. G. Teng. 2015. “Stress-strain behavior of FRP-confined recycled aggregate concrete.” J. Compos. Constr. 19 (3): 04015054. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000513.
Zhao, Y. G., S. Q. Lin, Z. H. Lu, T. Saito, and L. S. He. 2018. “Loading paths of confined concrete in circular concrete loaded CFT stub columns subjected to axial compression.” Eng. Struct. 156: 21–31. https://doi.org/10.1016/j.engstruct.2017.11.010.
Zhou, Y., Y. Zheng, L. Sui, F. Xing, J. Hu, and P. Li. 2019. “Behavior and modeling of FRP-confined ultra-lightweight cement composites under monotonic axial compression.” Composites, Part B 162: 289–302. https://doi.org/10.1016/j.compositesb.2018.10.087.
Zohrevand, P., and A. Mirmiran. 2011. “Behavior of ultrahigh-performance concrete confined by fiber-reinforced polymers.” J. Mater. Civ. Eng. 23 (12): 1727–1734. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000324.

Information & Authors

Information

Published In

Go to Journal of Composites for Construction
Journal of Composites for Construction
Volume 25Issue 1February 2021

History

Received: Jan 15, 2020
Accepted: Aug 7, 2020
Published online: Oct 23, 2020
Published in print: Feb 1, 2021
Discussion open until: Mar 23, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Postdoctoral Fellow, Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing Univ. of Technology, Beijing 100124, China. Email: [email protected]
Yan-Gang Zhao, M.ASCE [email protected]
Professor, Dept. of Architecture, Kanagawa Univ., 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan (corresponding author). Email: [email protected]
Jianming Li [email protected]
Postgraduate Student, Dept. of Architecture, Kanagawa Univ., 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan. Email: [email protected]
Zhao-Hui Lu [email protected]
Professor, Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing Univ. of Technology, Beijing 100124, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share