Technical Papers
Oct 3, 2019

Approximate Evaluation of Maximum Force Transferable at FRP-Masonry Interface

Publication: Journal of Composites for Construction
Volume 23, Issue 6

Abstract

The debonding phenomenon between fiber-reinforced polymer (FRP) composites and masonry is influenced by the presence of mortar joints that could reduce the bond capacity of the FRP-brick interface (i.e., in the absence of the joints). The actual estimate of the maximum load transferable at the FRP-masonry interface is cumbersome. Thus, the aim of this paper is twofold. First, the paper provides a set of useful key remarks to understand how the presence of joints influence the behavior of the FRP-masonry interface with respect to the FRP-brick interface. This is an important aspect of the paper because it summarizes previous work and provides guidance for designers and researchers. Secondly, this paper proposes a step-by-step procedure to obtain an approximate estimate of the maximum transferable load at the FRP-masonry interface provided that the characteristics of the FRP-brick and FRP-mortar interfaces are known or can be derived from codes and guidelines, and the thickness of brick and joints is assigned. To the best knowledge of the authors, an approximate formulation for the FRP-masonry interface is presented in this paper for the first time together with guidance to evaluate when an approximate formulation might be necessary based on the desired acceptable error. The comparison between the maximum load transferable at the FRP-masonry interface and its approximation presented in this paper provides a relative error of roughly 0.4% for case of practical interest. Finally, the paper provides an example application of the proposed procedure.

Get full access to this article

View all available purchase options and get full access to this article.

References

Aiello, M. A., and M. S. Sciolti. 2008. “Analysis of bond performance between CFRP sheets and calcarenite ashlars under service and ultimate conditions.” Masonry Int. 21 (1): 15–28.
Aiello, M. A., and S. M. Sciolti. 2006. “Bond analysis of masonry structures strengthened with CFRP sheets.” Constr. Build. Mater. 20 (1–2): 90–100. https://doi.org/10.1016/j.conbuildmat.2005.06.040.
Alecci, V., F. Focacci, L. Rovero, G. Stipo, and M. De Stefano. 2017. “Intrados strengthening of brick masonry arches with different FRCM.” Compos. Struct. 176 (Sep): 898–909. https://doi.org/10.1016/j.compstruct.2017.06.023.
Ascione, L., L. Feo, and F. Fraternali. 2005. “Load carrying capacity of 2D FRP/strengthened masonry structures.” Compos. Part B 36 (8): 619–626. https://doi.org/10.1016/j.compositesb.2004.12.004.
Barbieri, G., L. Biolzi, M. Bocciarelli, and S. Cattaneo. 2015. “Pull out of FRP reinforcement from masonry pillars: Experimental and numerical results.” Compos. Part B 69 (Feb): 516–525. https://doi.org/10.1016/j.compositesb.2014.10.025.
Buckingham, E. 1914. “On physically linear systems; illustration of the use of dimensional equations.” Phys. Rev. 4 (4): 345–376. https://doi.org/10.1103/PhysRev.4.345.
Capozucca, R. 2010. “Experimental FRP/SRP historic masonry delamination.” Compos. Struct. 92 (4): 891–903. https://doi.org/10.1016/j.compstruct.2009.09.029.
Capozucca, R. 2013. “Effect of mortar layers in the delamination of GFRP bonded to historic masonry.” Compos. Part B 44 (1): 639–649. https://doi.org/10.1016/j.compositesb.2012.02.012.
Carloni, C. 2014. “Analyzing bond characteristics between composites and quasi-brittle substrates in the repair of bridges and other concrete structures.” In Advanced composites in bridge construction and repair, 61–69. Cambridge: Woodhead Publishing.
Carloni, C., and F. Focacci. 2016. “FRP-masonry interfacial debonding: An energy balance approach to determine the influence of the mortar joints.” Eur. J. Mech. A/Solids 55 (Jan): 122–133. https://doi.org/10.1016/j.euromechsol.2015.08.003.
Carloni, C., and K. V. Subramaniam. 2012. “FRP-masonry debonding: Numerical and experimental study of the role of mortar joints.” J. Compos. Constr. 16 (5): 581–589. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000282.
Carloni, C., and K. V. Subramaniam. 2016. “Investigation of the interface fracture during debonding between FRP and masonry.” Adv. Struct. Eng. 12 (5): 731–743. https://doi.org/10.1260/136943309789867890.
Carozzi, F. G., et al. 2017. “Experimental investigation of tensile and bond properties of carbon-FRCM composites for strengthening masonry elements.” Compos. Part B 128 (Nov): 100–119. https://doi.org/10.1016/j.compositesb.2017.06.018.
Carozzi, F. G., P. Colombi, and C. Poggi. 2015. “Calibration of end-debonding strength model for FRP-reinforced masonry.” Compos. Struct. 120 (Feb): 366–377. https://doi.org/10.1016/j.compstruct.2014.09.033.
Carrara, P., D. Ferretti, and F. Freddi. 2013. “Debonding behavior of ancient masonry elements strengthened with CFRP sheets.” Compos. Part B 45 (1): 800–810. https://doi.org/10.1016/j.compositesb.2012.04.029.
Casareto, M., A. Oliveri, A. Romelli, and S. Lagomarsino. 2003. “Bond behavior of FRP laminates adhered to masonry.” In Proc., Int. Conf. Advancing with Composites, Plast2003. Milan, Italy.
Ceroni, F., G. de Felice, E. Grande, M. Malena, C. Mazzotti, F. Murgo, E. Sacco, and M. R. Valluzzi. 2014. “Analytical and numerical modeling of composite-to-brick bond.” Mater. Struct. 47 (12): 1987–2003. https://doi.org/10.1617/s11527-014-0382-8.
Ceroni, F., A. Garofano, and M. Pecce. 2015. “Bond tests on tuff elements externally bonded with FRP materials.” Mater. Struct. 48 (7): 2093–2110. https://doi.org/10.1617/s11527-014-0295-6.
Ceroni, F., M. Leone, V. Rizzo, A. Bellini, and C. Mazzotti. 2017. “Influence of mortar joints on the behaviour of FRP materials bonded to different masonry substrates.” Eng. Struct. 153 (Dec): 550–568. https://doi.org/10.1016/j.engstruct.2017.10.030.
Corradi, M., A. Borri, and A. Vignoli. 2002. “Strengthening techniques tested on masonry structures struck by the Umbria-Marche earthquake of 1997–1998.” Constr. Build. Mater. 16 (4): 229–239. https://doi.org/10.1016/S0950-0618(02)00014-4.
Corradi, M., A. Grazini, and A. Borri. 2007. “Confinement of brick columns with CFRP materials.” Comput. Sci. Tech. 67 (9): 1772–1783. https://doi.org/10.1016/j.compscitech.2006.11.002.
Dai, J., T. Ueda, and Y. Sato. 2005. “Development of the nonlinear bond stress-slip model of fiber reinforced plastics sheet-concrete interfaces with a simple method.” J. Compos. Constr. 9 (1): 52–62. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:1(52).
Dai, J. G., T. Ueda, and Y. Sato. 2006. “Unified analytical approaches for determining shear bond characteristics of FRP-concrete interfaces through pullout tests.” J. Adv. Concr. Technol. 4 (1): 133–145.
D’Altri, A. M., C. Carloni, S. de Miranda, and G. Castellazzi. 2018. “Numerical modeling of FRP strips bonded to a masonry substrate.” Compos. Struct. 200 (Sep): 420–433. https://doi.org/10.1016/j.compstruct.2018.05.119.
D’Ambrisi, A., L. Feo, and F. Focacci. 2013. “Experimental and analytical investigation on bond between carbon-FRCM materials and masonry.” Compos. Part B 46 (Mar): 15–20. https://doi.org/10.1016/j.compositesb.2012.10.018.
de Felice, G., et al. 2016. “Experimental characterization of composite-to-brick masonry shear bond.” Mater. Struct. 49 (7): 2581–2596. https://doi.org/10.1617/s11527-015-0669-4.
El-Gawady, M. A., P. Lestuzzi, and M. Badoux. 2005. “Aseismic retrofitting of unreinforced masonry walls using FRP.” Compos. Part B 37 (2–3): 148–162. https://doi.org/10.1016/j.compositesb.2005.06.003.
Elmalich, D., and O. Rabinovitch. 2015. “Dynamic geometrically nonlinear behavior of FRP-strengthened walls with debonded regions.” J. Eng. Mech. 141 (1): 04014105. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000814.
Fagone, M., G. Ranocchiai, and S. Briccoli Bati. 2015. “An experimental analysis about the effects of mortar joints on the efficiency of anchored CFRP-to-masonry reinforcements.” Compos. Part B 76 (Jul): 133–148. https://doi.org/10.1016/j.compositesb.2015.01.050.
Fedele, R., and G. Milani. 2012. “Assessment of bonding stresses between FRP sheets and masonry pillars during delamination tests.” Compos. Part B 43 (4): 1999–2011. https://doi.org/10.1016/j.compositesb.2012.01.080.
Fedele, R., M. Scaioni, L. Barazzetti, G. Rosati, and L. Biolzi. 2014. “Delamination tests on CFRP-reinforced masonry pillars: Optical monitoring and mechanical modeling.” Cem. Concr. Compos. 45 (Jan): 243–254. https://doi.org/10.1016/j.cemconcomp.2013.10.006.
Focacci, F., and C. Carloni. 2014. “A study of the fracture process at the FRP-masonry interface: The role of the periodic pattern of bricks and mortar joints.” Key Eng. Mater. 624: 611–618. https://doi.org/10.4028/www.scientific.net/KEM.624.611.
Focacci, F., and C. Carloni. 2015. “Periodic variation of the transferable load at the FRP-masonry interface.” Compos. Struct. 129 (Oct): 90–100. https://doi.org/10.1016/j.compstruct.2015.03.008.
Foraboschi, P. 2004. “Strengthening of masonry arches with fiber-reinforced polymer strips.” J. Compos. Constr. 8 (3): 191–202. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:3(191).
Foraboschi, P. 2016. “Effectiveness of novel methods to increase the FRP-masonry bond capacity.” Compos. Part B 107 (Dec): 214–232. https://doi.org/10.1016/j.compositesb.2016.09.060.
Franzoni, E., C. Gentilini, M. Santandrea, S. Zanotto, and C. Carloni. 2017. “Durability of steel FRCM-masonry joints: Effect of water and salt crystallization.” Mater. Struct. 50 (4): 201. https://doi.org/10.1617/s11527-017-1070-2.
Franzoni, E., C. Gentilini, M. Santandrea, S. Zanotto, and C. Carloni. 2018. “Effects of rising damp and salt crystallization cycles in FRCM-masonry interfacial debonding: Towards an accelerated laboratory test method.” Constr. Build. Mater. 175 (Jun): 225–238. https://doi.org/10.1016/j.conbuildmat.2018.04.164.
Freddi, F., and E. Sacco. 2016. “An interphase model for the analysis of the masonry-FRP bond.” Compos. Struct. 138 (Mar): 322–334. https://doi.org/10.1016/j.compstruct.2015.11.041.
Ghiassi, B., D. V. Oliveira, P. B. Loureno, and G. Marcari. 2013a. “Numerical study of the role of mortar joints in the bond behavior of FRP-strengthened masonry.” Compos. Part B 46 (Mar): 21–30. https://doi.org/10.1016/j.compositesb.2012.10.017.
Ghiassi, B., J. Xavier, D. V. Oliveira, and P. B. Lourenço. 2013b. “Application of digital image correlation in investigating the bond between FRP and masonry.” Compos. Struct. 106 (Dec): 340–349. https://doi.org/10.1016/j.compstruct.2013.06.024.
Grande, E., M. Imbimbo, and E. Sacco. 2011. “Bond behaviour of CFRP laminates glued on clay bricks: Experimental and numerical study.” Compos. Part B 42 (2): 330–340. https://doi.org/10.1016/j.compositesb.2010.09.020.
Hamed, E., and O. Rabinovitch. 2010. “Lateral out-of-plane strengthening of masonry walls with composite materials.” J. Compos. Constr. 14 (4): 376–387. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000093.
Kashyap, J., M. C. Griffith, M. S. Mohamed Ali, and D. J. Oehlers. 2011. “Prediction of load-slip behavior of FRP retrofitted masonry.” J. Compos. Constr. 15 (6): 943–951. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000224.
Krevaikas, T. D., and T. C. Triantafillou. 2005. “Masonry confinement with fiber-reinforced polymers.” J. Compos. Constr. 9 (2): 128–134. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:2(128).
Luciano, R., and E. Sacco. 1998. “Damage of masonry panels reinforced by FRP sheets.” Int. J. Solids Struct. 35 (15): 1723–1741. https://doi.org/10.1016/S0020-7683(97)00137-6.
Malena, M., F. Focacci, C. Carloni, and G. de Felice. 2017. “The effect of the shape of the cohesive material law on the stress transfer at the FRP-masonry interface.” Compos. Part B 110 (Feb): 368–380. https://doi.org/10.1016/j.compositesb.2016.11.012.
Mazzotti, C., B. Ferracuti, and A. Bellini. 2015. “Experimental bond tests on masonry panels strengthened by FRP.” Compos. Part B 80 (Oct): 223–237. https://doi.org/10.1016/j.compositesb.2015.05.019.
Oliveira, D. V., I. Basilio, and P. B. Loureno. 2011. “Experimental bond behavior of FRP sheets glued on brick masonry.” J. Compos. Constr. 15 (1): 32–41. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000147.
Prota, A., G. Manfredi, and F. Nardone. 2008. “Assessment of design formulas for in-plane FRP strengthening of masonry walls.” J. Compos. Constr. 12 (6): 643–649. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:6(643).
Rabinovitch, O. 2012. “Interaction, instability, and simultaneity of debonding processes in flexure of masonry walls strengthened on two sides with FRP.” Int. J. Fract. 177 (1): 1–24. https://doi.org/10.1007/s10704-012-9741-z.
Realfonzo, R., and A. Napoli. 2013. “Confining concrete members with FRP systems: Predictive vs design strain models.” Compos. Struct. 104 (Oct): 304–319. https://doi.org/10.1016/j.compstruct.2013.04.031.
Realfonzo, R., A. Napoli, and J. G. Ruiz Pinilla. 2014. “Cyclic behavior of RC beam-column joints strengthened with FRP systems.” Constr. Build. Mater. 54 (Mar): 282–297. https://doi.org/10.1016/j.conbuildmat.2013.12.043.
Rovero, L., F. Focacci, and G. Stipo. 2013. “Structural behavior of arch models strengthened using fiber-reinforced polymer strips of different lengths.” J. Compos. Constr. 17 (2): 249–258. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000325.
Saafi, M., H. Toutanji, and Z. Li. 1999. “Behavior of concrete columns confined with fiber reinforced polymer tubes.” ACI Mater. J. 96 (4): 500–509.
Sassoni, E., V. Sarti, A. Bellini, C. Mazzotti, and E. Franzoni. 2018. “The role of mortar joints in FRP debonding from masonry.” Compos. Part B 135 (Feb): 166–174. https://doi.org/10.1016/j.compositesb.2017.10.021.
Spoelstra, M. R., and G. Monti. 1999. “FRP-confined concrete model.” J. Compos. Constr. 3 (3): 143–150. https://doi.org/10.1061/(ASCE)1090-0268(1999)3:3(143).
Triantafillou, T. C., and M. N. Fardis. 1997. “Strengthening of historic masonry structures with composite materials.” Mater. Struct. 30 (8): 486–496. https://doi.org/10.1007/BF02524777.
Vaculik, J., P. Visintin, N. G. Burton, M. C. Griffith, and R. Seracino. 2018. “State-of-the-art review and future research directions for FRP-to-masonry bond research: Test methods and techniques for extraction of bond-slip behavior.” Constr. Build. Mater. 183 (Feb): 325–345. https://doi.org/10.1016/j.conbuildmat.2018.06.103.
Valluzzi, M. R., D. Tinazzi, and C. Modena. 2002. “Shear behavior of masonry panels strengthened by FRP laminates.” Constr. Build. Mater. 16 (7): 409–416. https://doi.org/10.1016/S0950-0618(02)00043-0.

Information & Authors

Information

Published In

Go to Journal of Composites for Construction
Journal of Composites for Construction
Volume 23Issue 6December 2019

History

Received: May 5, 2018
Accepted: Apr 10, 2019
Published online: Oct 3, 2019
Published in print: Dec 1, 2019
Discussion open until: Mar 3, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Francesco Focacci [email protected]
Associate Professor, Università eCampus, Via Isimbardi 10, Como, Novedrate 22060, Italy (corresponding author). Email: [email protected]
Associate Professor, Dept. of Civil Engineering, Case Western Reserve Univ., 10900 Euclid Ave., Cleveland, OH 44106. ORCID: https://orcid.org/0000-0003-1663-7535. Email: [email protected]
Mario De Stefano [email protected]
Professor, Dipartimento di Architettura, Università di Firenze, Piazza Brunelleschi 6, Firenze 50121, Italy. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share