Case Studies
May 1, 2019

Seismic Assessment of a 14th-Century Stone Arch Bridge: Role of Soil–Structure Interaction

Publication: Journal of Bridge Engineering
Volume 24, Issue 7

Abstract

The study investigates the seismic response of the Azzone Visconti Bridge, which is a fourteenth century stone arch bridge crossing the Adda River in northern Italy. Based on previous extensive three-dimensional (3D) geometric surveys and mechanical characterization of both the soil constituting the riverbed and the masonry constituting the piers, a detailed 3D finite-element (FE) model was built. On-site ambient vibration tests have allowed dynamic characterization of the bridge. A preliminary sensitivity analysis on soil–structure interaction (SSI) parameters pointed out the key role of this boundary condition in the fitting of the mode shapes and their frequencies. Fully nonlinear dynamic analysis including the SSI have highlighted the safety levels for the structure and for the foundations.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors are indebted to the Municipality of Lecco and “Consorzio dell’Adda” for the precious historical and technical documents acquired with their help and to Arch. Chiara Rostagno (former official of the Ministry of Cultural Heritage and Tourism, Superintendent of Fine Arts and Landscape) for the stimulating discussions and the appreciated suggestions on the historical material provided. The authors wish to thank the colleagues of GICARUS Laboratory in Polo Territoriale di Lecco, who provided the 3D CAD model of the bridge. The authors are also grateful to Dr. Pierfrancesco Cacciola, who provided the spectrum-compatible accelerograms, and to Professors Claudio di Prisco and Federico Perotti for their precious suggestions.

References

Acito, M., M. Bocciarelli, C. Chesi, and G. Milani. 2014. “Collapse of the clock tower in Finale Emilia after the May 2012 Emilia Romagna earthquake sequence: Numerical insight.” Eng. Struct. 72 (Aug): 70–91. https://doi.org/10.1016/j.engstruct.2014.04.026.
Ahmadi, E., and F. Khoshnoudian. 2015. “Near-fault effects on strength reduction factors of soil-MDOF structure systems.” Soils Found. 55 (4): 841–856. https://doi.org/10.1016/j.sandf.2015.06.015.
Ahmadi, E., F. Khoshnoudian, and M. Hosseini. 2015. “Importance of soil material damping in seismic responses of soil-MDOF structure systems.” Soils Found. 55 (1): 35–44. https://doi.org/10.1016/j.sandf.2014.12.003.
Bayraktar, A., T. Türker, and A. C. Altunişik. 2015. “Experimental frequencies and damping ratios for historical masonry arch bridges.” Constr. Build. Mater. 75 (Jan): 234–241. https://doi.org/10.1016/j.conbuildmat.2014.10.044.
Bienen, B., B. W. Byrne, G. T. Houlsby, and M. J. Cassidy. 2006. “Investigating six-degree-of-freedom loading of shallow foundation on sand.” Géotechnique 56 (6): 367–379. https://doi.org/10.1680/geot.2006.56.6.367.
Binda, L., A. Saisi, and C. Tiraboschi. 2001. “Application of sonic tests to the diagnosis of damaged and repaired structures.” NDT & E Int. 34 (2): 123–138. https://doi.org/10.1016/S0963-8695(00)00037-2.
Boothby, T. 2001. “Load rating of masonry arch bridges.” J. Bridge Eng. 6 (2): 79–86. https://doi.org/10.1061/(ASCE)1084-0702(2001)6:2(79).
Brencich, A., and U. De Francesco. 2004a. “Assessment of multispan masonry arch bridges. I: Simplified approach.” J. Bridge Eng. 9 (6): 582–590. https://doi.org/10.1061/(ASCE)1084-0702(2004)9:6(582).
Brencich, A., and U. De Francesco. 2004b. “Assessment of multispan masonry arch bridges. II: Examples and applications.” J. Bridge Eng. 9 (6): 591–598. https://doi.org/10.1061/(ASCE)1084-0702(2004)9:6(591).
Brinch-Hansen, J. 1970. A revised and extended formula for bearing capacity. Bulletin No. 28, 5–11. Lyngby, Denmark: Danish Geotechnical Institute.
Brincker, R., L. Zhang, and P. Andersen. 2001. “Modal identification of output-only systems using frequency domain decomposition.” Smart Mater. Struct. 10 (3): 441–445. https://doi.org/10.1088/0964-1726/10/3/303.
Cacciola, P., P. Colajanni, and G. Muscolino. 2004. “Combination of modal responses consistent with seismic input representation.” J. Struct. Eng. 130 (1): 47–55. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:1(47).
Cacciola, P., L. D’Amico, and I. Zentner. 2014. “New insights in the analysis of the structural response to response-spectrum-compatible accelerograms.” Eng. Struct. 78 (Nov): 3–16. https://doi.org/10.1016/j.engstruct.2014.07.015.
Castellazzi, G., A. M. D’Altri, S. de Miranda, and F. Ubertini. 2017. “An innovative numerical modeling strategy for the structural analysis of historical monumental buildings.” Eng. Struct. 132 (Feb): 229–248. https://doi.org/10.1016/j.engstruct.2016.11.032.
Cavicchi, A., and L. Gambarotta. 2005. “Collapse analysis of masonry bridges taking into account arch-fill interaction.” Eng. Struct. 27 (4): 605–615. https://doi.org/10.1016/j.engstruct.2004.12.002.
Clementi, F., E. Quagliarini, F. Monni, E. Giordano, and S. Lenci. 2017. “Cultural heritage and earthquake: The case study of “Santa Maria Della Carità” in Ascoli Piceno.” Open Civ. Eng. J. 11 (S5, M5): 1079–1105. https://doi.org/10.2174/1874149501711011079.
Compán, V., P. Pachón, M. Cámara, P. B. Lourenço, and A. Sáez. 2017. “Structural safety assessment of geometrically complex masonry vaults by non-linear analysis. The Chapel of the Würzburg Residence (Germany).” Eng. Struct. 140 (Jun): 1–13. https://doi.org/10.1016/j.engstruct.2017.03.002.
Cremona, C. 2009. “Investigations et èvaluations dynamiques des ponts.” In Techniques et méthodes des Laboratoire des ponts et Chausséss. Paris: Laboratoire Central des Ponts et Chausséss.
D’Altri, A. M., G. Castellazzi, and S. de Miranda. 2018. “Collapse investigation of the Arquata del Tronto medieval fortress after the 2016 Central Italy seismic sequence.” J. Build. Eng. 18 (Jul): 245–251. https://doi.org/10.1016/j.jobe.2018.03.021.
Dassault Systèmes. 2016. Analysis user’s manual, version 6.14. Providence, RI: Dassault Systèmes.
de Felice, G. 2009. “Assessment of the load-carrying capacity of multi-span masonry arch bridges using fibre beam elements.” Eng. Struct. 31 (8): 1634–1647. https://doi.org/10.1016/j.engstruct.2009.02.022.
De Santis, S., and G. de Felice. 2014. “Overview of railway masonry bridges with a safety factor estimate.” Int. J. Archit. Heritage 8 (3): 452–474. https://doi.org/10.1080/15583058.2013.826298.
Elmenshawi, A., M. Sorour, A. Mufti, L. G. Jaeger, and N. Shrive. 2010. “Damping mechanisms and damping ratios in vibrating unreinforced stone masonry.” Eng. Struct. 32 (10): 3269–3278. https://doi.org/10.1016/j.engstruct.2010.06.016.
Fanning, P. J., and T. E. Boothby. 2001. “Three-dimensional modelling and full-scale testing of stone arch bridges.” Comput. Struct. 79 (29–30): 2645–2662. https://doi.org/10.1016/S0045-7949(01)00109-2.
Figini, R. 2010. “Non-linear dynamic soil-structure interaction: Application to seismic analysis and design of structures on shallow foundations.” Ph.D. thesis, Politecnico di Milano.
Fioravante, V. 2000. “Anisotropy of small strain stiffness of Ticino and Kenya sands from seismic wave propagation measured in triaxial testing.” Soils Found. 40 (4): 129–142. https://doi.org/10.3208/sandf.40.4_129.
Galli, A., I. Farshchi, and M. Caruso. 2015. “Influence of loading path on cyclic mechanical response of small-scale shallow strip footing on loose sand.” Can. Geotech. J. 52 (9): 1228–1240. https://doi.org/10.1139/cgj-2014-0253.
Gattesco, N., C. Amadio, and C. Bedon. 2015. “Experimental and numerical study on the shear behavior of stone masonry walls strengthened with GFRP reinforced mortar coating and steel-cord reinforced repointing.” Eng. Struct. 90 (May): 143–157. https://doi.org/10.1016/j.engstruct.2015.02.024.
Gazetas, G. 1991. “Foundation vibrations.” In Foundation engineering handbook, edited by H. Y. Fang. Boston: Springer.
Lee, J., and G. Fenves. 1998. “Plastic-damage model for cyclic loading of concrete structures.” J. Eng. Mech. 124 (8): 892–900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892).
Lombardia Beni Culturali. 2017. “Lombardy cultural heritage.” Accessed July 13, 2017. http://www.lombardiabeniculturali.it.
Lubliner, J., J. Oliver, S. Oller, and E. Oñate. 1989. “A plastic damage model for concrete.” Int. J. Solids Struct. 25 (3): 299–329. https://doi.org/10.1016/0020-7683(89)90050-4.
Magnani, R. 2014. In Vol. 1 of La Missione segreta di Leonardo da Vinci. Milano, Italy: Io Sono Edizioni.
Marghella, G., A. Marzo, B. Carpani, M. Indirli, and A. Formisano. 2016. “Comparison between in situ experimental data and Italian code standard values.” In Proc., 16th Int. Brick and Block Masonry Conf., IBMAC 2016, 1707–1714. Amsterdam, Netherlands: CRC Press/Balkema.
Martinelli, P., A. Galli, L. Barazzetti, M. Colombo, R. Felicetti, M. Previtali, F. Roncoroni, M. Scola, and M. di Prisco. 2018. “Bearing capacity assessment of a 14th century arch bridge in Lecco (Italy).” Int. J. Archit. Heritage 12 (2): 237–256. https://doi.org/10.1080/15583058.2017.1399482.
McGuire, J. W., W. F. Cofer, M. L. Marsh, and D. I. McLean. 1994. “Analytical modeling of spread footing foundations for seismic analysis of bridges.” Transp. Res. Rec. 1447: 80–92.
Milani, G., and P. B. Lourenço. 2012. “3D non-linear behavior of masonry arch bridges.” Comput. Struct. 110–111 (Nov): 133–150. https://doi.org/10.1016/j.compstruc.2012.07.008.
Ministero delle Infrastrutture. 2008. Nuove norme tecniche per le costruzioni. NTC 2008. Rome: Ministero delle Infrastrutture.
Ministero delle Infrastrutture. 2009. Istruzioni per l’applicazione delle nuove norme tecniche per le costruzioni di cui al decreto ministeriale 14 Gennaio 2008. Circolare No. 617, NTC 2008. Rome: Ministero delle Infrastrutture.
Molins, C., and P. Roca. 1998. “Capacity of masonry arches and spatial frames.” J. Struct. Eng. 124 (6): 653–663. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:6(653).
Mylonakis, G., S. Nikolaou, and G. Gazetas. 2006. “Footings under seismic loading: Analysis and design issues with emphasis on bridge foundations.” Soil Dyn. Earthquake Eng. 26 (9): 824–853. https://doi.org/10.1016/j.soildyn.2005.12.005.
Nova, R., and L. Montrasio. 1991. “Settlements of shallow foundations on sand.” Géotechnique 41 (2): 243–256. https://doi.org/10.1680/geot.1991.41.2.243.
O’Connor, C. 1994. “Development in Roman stone arch bridges.” Endeavour 18 (4): 157–162. https://doi.org/10.1016/0160-9327(95)90524-X.
Pais, A., and E. Kausel. 1988. “Approximate formulas for dynamic stiffnesses of rigid foundations.” Soil Dyn. Earthquake Eng. 7 (4): 213–227. https://doi.org/10.1016/S0267-7261(88)80005-8.
Pelà, L., A. Aprile, and A. Benedetti. 2009. “Seismic assessment of masonry arch bridges.” Eng. Struct. 31 (8): 1777–1788. https://doi.org/10.1016/j.engstruct.2009.02.012.
Pelà, L., A. Aprile, and A. Benedetti. 2013. “Comparison of seismic assessment procedures for masonry arch bridges.” Constr. Build. Mater. 38 (Jan): 381–394. https://doi.org/10.1016/j.conbuildmat.2012.08.046.
Poulos, H. G., and E. H. Davis. 1974. Elastic solutions for soil and rock mechanics. New York: John Wiley.
Roca, P., J. L. González, E. Oñate, and P. B. Lourenço. 1998. “Experimental and numerical issues in the modelling of the mechanical behaviour of masonry.” Structural analysis of historical constructions II: Possibilities of the numerical and experimental techniques, 57–91. Barcelona, Spain: CIMNE.
Sevim, B., A. Bayraktar, A. C. Altunişik, S. Atamtürktür, and F. Birinci. 2011. “Finite element model calibration effects on the earthquake response of masonry arch bridges.” Finite Elem. Anal. Des. 47 (7): 621–634. https://doi.org/10.1016/j.finel.2010.12.011.
Silva, B., M. Dalla Benetta, F. Da Porto, and M. R. Valluzzi. 2014. “Compression and sonic tests to assess effectiveness of grout injection on three-leaf stone masonry walls.” Int. J. Archit. Heritage 8 (3): 408–435. https://doi.org/10.1080/15583058.2013.826300.
Stewart, J., C. B. Crouse, and T. C. Hutchinson, B. Lizundia, and F. Naeim, and F. Ostadan. 2012. Soil-structure interaction for building structures. Rep. No. NIST GCR 12-917-21. Washington, DC: NIST.
Tiberti, S., M. Acito, and G. Milani. 2016. “Comprehensive FE numerical insight into Finale Emilia Castle behavior under 2012 Emilia Romagna seismic sequence: Damage causes and seismic vulnerability mitigation hypothesis.” Eng. Struct. 117 (Jun): 397–421. https://doi.org/10.1016/j.engstruct.2016.02.048.
UNI (Ente Italiano di Normazione). 2002. Vibrazioni su ponti e viadotti–Linee guida per l’esecuzione di prove e rilievi dinamici. UNI 10985. Milan, Italy: UNI.
Ural, A., S. Oruç, A. Doğangün, and Ö. İ. Tulik. 2008. “Turkish historical arch bridges and their deteriorations and failures.” Eng. Fail. Anal. 15 (1–2): 43–53. https://doi.org/10.1016/j.engfailanal.2007.01.006.
Valente, M., and G. Milani. 2016. “Seismic assessment of historical masonry towers by means of simplified approaches and standard FEM.” Constr. Build. Mater. 108 (Apr): 74–104. https://doi.org/10.1016/j.conbuildmat.2016.01.025.
Zampieri, P., M. A. Zanini, and C. Modena. 2015. “Simplified seismic assessment of multi-span masonry arch bridges.” Bull. Earthquake Eng. 13 (9): 2629–2646. https://doi.org/10.1007/s10518-015-9733-2.

Information & Authors

Information

Published In

Go to Journal of Bridge Engineering
Journal of Bridge Engineering
Volume 24Issue 7July 2019

History

Received: Jul 25, 2018
Accepted: Feb 14, 2019
Published online: May 1, 2019
Published in print: Jul 1, 2019
Discussion open until: Oct 1, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Giulio Zani
Postdoctoral Research Assistant, Dept. of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. da Vinci 32, Milan 20133, Italy.
Paolo Martinelli [email protected]
Assistant Professor, Dept. of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. da Vinci 32, Milan 20133, Italy (corresponding author). Email: [email protected]
Andrea Galli
Assistant Professor, Dept. of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. da Vinci 32, Milan 20133, Italy.
Carmelo Gentile
Professor, Dept. of Architecture, Built Environment and Construction Engineering, Politecnico di Milano, Via Ponzio 31, Milan 20133, Italy.
Marco di Prisco
Professor, Dept. of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. da Vinci 32, Milan 20133, Italy.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share