Technical Papers
Oct 28, 2021

Improved Mixed-Mode Bending Test Apparatus through Analytical Modeling and Finite-Element Optimization for Improved Characterization

Publication: Journal of Aerospace Engineering
Volume 35, Issue 1

Abstract

The compliance of the mixed-mode bending (MMB) test fixtures can influence the interlaminar fracture toughness measurements for different mixed-mode ratios in an unpredictable way. The purpose of this article is to introduce the improved mixed-mode bending (IMMB) apparatus with slight modifications to the current MMB apparatus and universally recognized by current standards. The MMB apparatus is used to measure any Mode I to Mode II strain energy release rate (SERR) ratio from 0 to approximately 5. The original MMB components were investigated using a finite-element optimization algorithm and an analytical model for exploring the relationship between the component’s stiffnesses and MMB compliance. Two IMMB designs are presented. The first design addresses MMB’s compliance by modifying the dimensions of the most impactful components. The second design introduces new components in addition to dimensional changes to maximally increase MMB stiffness. The new designs enhance the MMB apparatus’s stiffness by 27% and 87%, respectively.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This work has been completed as a part of undergraduate research without any funding.

References

Aliha, M. M. R., H. G. Kucheki, and M. Mirsayar. 2021. “Mixed mode I/II fracture analysis of Bi-material adhesive bonded joints using a novel short beam specimens.” Appl. Sci. 11 (11): 5232. https://doi.org/10.3390/app11115232.
Aliha, M. R. M., M. H. Kalantari, S. M. N. Ghoreishi, A. R. Torabi, and S. Etesam. 2019. “Mixed mode I/II crack growth investigation for bi-metal FSW aluminum alloy AA7075/T6 pure copper joints.” Theor. Appl. Fract. Mech. 103 (Sep): 102243. https://doi.org/10.1016/j.tafmec.2019.102243.
Arcan, M., Z. Hashin, and A. Voloshin. 1978. “A method to produce uniform plane-stress states with applications to fiber-reinforced materials.” Exp. Mech. 18 (4): 141–146. https://doi.org/10.1007/BF02324146.
ASTM. 2001. Standards test method for mixed mode I-mode II interlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites. ASTM D6671-01. West Conshohocken, PA: ASTM.
ASTM. 2019. Standards test method for mixed mode I-mode II interlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites. ASTM D6671/D6671M-19. West Conshohocken, PA: ASTM.
Benzeggagh, M., and M. Kenane. 1996. “Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus.” Compos. Sci. Technol. 56 (4): 439–449. https://doi.org/10.1016/0266-3538(96)00005-X.
Bonhomme, J., A. Argüelles, J. Viña, and I. Viña. 2009. “Fractography and failure mechanisms in static mode I and mode II delamination testing of unidirectional carbon reinforced composites.” Polym. Test. 28 (6): 612–617. https://doi.org/10.1016/j.polymertesting.2009.05.003.
Bonhomme, J., A. Argüelles, J. Viña, I. Viña, and V. Mollon. 2010. “Compliance correction for numerical and experimental determination of mode I and mode II composite fracture failure.” Mech. Adv. Mater. Struct. 17 (5): 377–381. https://doi.org/10.1080/15376494.2010.488617.
Bradley, W. L., and R. N. Cohen. 1985. Matrix deformation and fracture in graphite-reinforced epoxies. ASTM STP 876. West Conshohocken, PA: ASTM.
Cater, C. R., X. Xiao, R. K. Goldberg, and L. W. Kohlman. 2015. “Single ply and multi-ply braided composite response predictions using modified subcell approach.” J. Aerosp. Eng. 28 (5): 04014117. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000445.
Chen, J., R. Sernow, E. Schulz, and G. Hinrichsen. 1999. “A modification of the mixed-mode bending test apparatus.” Composites, Part A 30 (7): 871–877. https://doi.org/10.1016/S1359-835X(98)00193-6.
Crews, J. H., and J. R. Reeder. 1988. A mixed-mode bending apparatus for delamination testing. Hampton, VA: Langley Research Center.
Daneshjoo, Z., L. Amaral, R. Alderliesten, M. Shokrieh, and M. Fakoor. 2019. “Development of a physics-based theory for mixed mode I/II delamination onset in orthotropic laminates.” Theor. Appl. Fract. Mech. 103 (Oct): 102303. https://doi.org/10.1016/j.tafmec.2019.102303.
Ducept, F., P. Davies, and D. Gamby. 1997. “An experimental study to validate tests used to determine mixed mode failure criteria of glass/epoxy composites.” Composites, Part A 28 (8): 719–729. https://doi.org/10.1016/S1359-835X(97)00012-2.
Hashemi, S., A. J. Kinloch, and J. G. Williams. 1987. “Interlaminar fracture of composite materials.” In Vol. 3 of Proc., Int. Conf. on Composite Materials and Second European Conf. on Composite Materials, 3.254–3.264. Hannover, Germany: Leibniz Universität.
Johnson, W. S. 1987. “Stress analysis of the crack-lap-shear specimen: An ASTM round-robin.” J. Test. Eval. 15 (6): 303–324. https://doi.org/10.1520/JTE11028J.
Khansari, N., A. Farrokhi, and A. Mosavi. 2019. “Orthotropic mode II shear test fixture: Iosipesque modification.” Eng. Solid Mech. 7 (2): 93–108. https://doi.org/10.5267/j.esm.2019.4.003.
Kinloch, A., Y. Wang, J. Williams, and P. Yayla. 1993. “The mixed-mode delamination of fibre composite materials.” Compos. Sci. Technol. 47 (3): 225–237. https://doi.org/10.1016/0266-3538(93)90031-B.
Kolluri, M., M. H. Thissen, J. P. Hoefnagels, J. A. Dommelen, and M. G. Geers. 2008. “Advanced miniature mixed mode bending setup for in-situ interface delamination characterization.” In Proc., EuroSimE 2008—Int. Conf. on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Micro-Systems. New York: IEEE. https://doi.org/10.1109/esime.2008.4525090.
Littell, J. D., W. K. Binienda, G. D. Roberts, and R. K. Goldberg. 2009. “Characterization of damage in triaxial braided composites under tensile loading.” J. Aerosp. Eng. 22 (3): 270–279. https://doi.org/10.1061/(ASCE)0893-1321(2009)22:3(270).
Martin, R. 1996. “Interlaminar fracture characterization.” In Key engineering materials, 329–346. Freienbach, Switzerland: Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/KEM.120-121.329.
Mathews, M., and S. Swanson. 2007. “Characterization of the interlaminar fracture toughness of a laminated carbon/epoxy composite.” Compos. Sci. Technol. 67 (7–8): 1489–1498. https://doi.org/10.1016/j.compscitech.2006.07.035.
Mirsayar, M., X. Shi, and D. Zollinger. 2017. “Evaluation of interfacial bond strength between Portland cement concrete and asphalt concrete layers using bi-material SCB test specimen.” Eng. Solid Mech. 5 (4): 293–306. https://doi.org/10.5267/j.esm.2017.8.001.
Mollon, V., J. Bonhomme, J. Vina, and A. Argüelles. 2010. “Mixed mode fracture toughness: An empirical formulation for GI/GII determination in asymmetric DCB specimens.” Eng. Struct. 32 (11): 3699–3703. https://doi.org/10.1016/j.engstruct.2010.08.014.
O’Brien, T. K., N. J. Johnston, I. S. Raju, D. H. Morris, and R. A. Simmonds. 1987. Comparisons of various configurations of the edge delamination test for interlaminar fracture toughness. ASTM STP 937. West Conshohocken, PA: ASTM.
Pereira, F. A. M., M. F. S. F. de Moura, N. Dourado, J. J. L. Morais, F. G. A. Silva, and M. I. R. Dias. 2016. “Bone fracture characterization under mixed-mode I + II loading using the MMB test.” Eng. Fract. Mech. 166 (Oct): 151–163. https://doi.org/10.1016/j.engfracmech.2016.08.011.
Pflugler, N., G. M. Reuther, M. Goroll, D. Udiljak, R. Pufall, and B. Wunderle. 2019 “Experimental determination of critical adhesion energies with the advanced button shear test.” Microelectron. Reliab. 99 (Aug): 177–185. https://doi.org/10.1016/j.microrel.2019.
Reeder, J. R. 1992. An evaluation of mixed-mode delamination failure criteria. Hampton, VA: Langley Research Center.
Reeder, J. R. 2000. Refinements to the mixed-mode bending test for delamination toughness. Hampton, VA: Langley Research Center.
Reeder, J. R. 2003. “Refinements to the mixed-mode bending test for delamination toughness.” J. Compos. Technol. Res. 25 (4): 1–5.
Reeder, J. R., and J. H. Crews. 1990. “Mixed-mode bending method for delamination testing.” AIAA J. 28 (7): 1270–1276. https://doi.org/10.2514/3.25204.
Reeder, J. R., and J. H. Crews Jr. 1992. “Redesign of the mixed-mode bending delamination test to reduce nonlinear effects.” J. Compos. Technol. Res. 14 (1): 12. https://doi.org/10.1520/CTR10078J.
Russell, A. J., and K. N. Street. 1985. Moisture and temperature effects on the mixed-mode delamination fracture of unidirectional graphite/epoxy. ASTM STP 876. West Conshohocken, PA: ASTM.
Shokrieh, M. M., A. Zeinedini, and S. M. Ghoreishi. 2017. “On the mixed mode I/II delamination R-curve of E-glass/epoxy laminated composites.” Compos. Struct. 171 (Jul): 19–31. https://doi.org/10.1016/j.compstruct.2017.03.017.
Stamoulis, G., N. Carrere, J. Y. Cognard, P. Davies, and C. Badulescu. 2014. “On the experimental mixed-mode failure of adhesively bonded metallic joints.” Int. J. Adhes. Adhes. 51 (Jun): 148–158. https://doi.org/10.1016/j.ijadhadh.2014.03.002.
Szekrényes, A. 2006. “Prestressed fracture specimen for delamination testing of composites.” Int. J. Fract. 139 (2): 213–237. https://doi.org/10.1007/s10704-006-0043-1.
Torabi, A. R., M. H. Kalantari, and M. R. M. Aliha. 2018. “Fracture analysis of dissimilar A-Al friction stir welded joints under tensile/shear loading.” Fatigue Fract. Eng. Mater. Struct. 41 (9): 2040–2053. https://doi.org/10.1111/ffe.12841.
Tracy, G. D., P. Feraboli, and K. T. Kedward. 2003. “A new mixed mode test for carbon/epoxy composite systems.” Composites, Part A 34 (11): 1125–1131. https://doi.org/10.1016/S1359-835X(03)00205-7.
Troughton, M. J. 2008. “Chapter 18—Mechanical fastening.” In Handbook of plastics joining: A practical guide. 2nd ed., 175–201. Norwich, UK: William Andrew.
Yekani Fard, M., A. Chattopadhyay, and Y. Liu. 2014. “Influence of load type and stress gradient on flexural strength of an epoxy resin polymeric material.” J. Aerosp. Eng. 27 (1): 55–63. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000228.
Yekani Fard, M., Y. Liu, and A. Chattopadhyay. 2012. “Characterization of epoxy resin including strain rate effects using digital image correlation system.” J. Aerosp. Eng. 25 (2): 308–319. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000127.
Yekani Fard, M., B. Raji, and H. Pankretz. 2020. “Correlation of nanoscale interface debonding and multimode fracture in polymer carbon composites with long-term hygrothermal effects.” J. Mech. Mater. 150 (Nov): 103601. https://doi.org/10.1016/j.mechmat.2020.103601.
Yekani Fard, M., B. Raji, J. Woodward, and M. Padilla. 2019a. “Experimental characterization of damage mechanisms of seamless net-shaped circular pre-form and overlapped stitched composite pipes.” Polym. Test. 78 (Sep): 105934. https://doi.org/10.1016/j.polymertesting.2019.105934.
Yekani Fard, M., B. Raji, J. M. Woodward, and A. Chattopadhyay. 2019b. “Characterization of interlaminar fracture modes I, II, and I-II of carbon/epoxy composites including in-service related bonding quality conditions.” J. Polym. Test. 77 (Sep): 105894. https://doi.org/10.1016/j.polymertesting.2019.05.010.

Information & Authors

Information

Published In

Go to Journal of Aerospace Engineering
Journal of Aerospace Engineering
Volume 35Issue 1January 2022

History

Received: Jan 15, 2021
Accepted: Sep 14, 2021
Published online: Oct 28, 2021
Published in print: Jan 1, 2022
Discussion open until: Mar 28, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Assistant Research Professor, School for Engineering of Matter, Transport, and Energy, Arizona State Univ., Tempe, AZ 85287 (corresponding author). ORCID: https://orcid.org/0000-0002-1371-3304. Email: [email protected]
Christian Bonney [email protected]
Undergraduate Student Researcher, School for Engineering of Matter, Transport, and Energy, Arizona State Univ., Tempe, AZ 85287. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • CNT Network Size/Interphase and Multimode Interlaminar Fracture of CNT Buckypaper Nanocomposites, AIAA SCITECH 2023 Forum, 10.2514/6.2023-1133, (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share