Abstract

Computational fluid dynamics is applied to reproduce the characteristics of the liquid methanol burner presented by the National Institute of Standards and Technology (NIST). Reynolds average Navier-Stokes (RANS) and large-eddy simulations (LES) are employed, along with the steady nonadiabatic flamelets combustion model (using an extended reaction mechanism). The spray is not directly simulated, but instead, the linearized instability sheet atomization (LISA) model is implemented. The results obtained with RANS are used to estimate the scales of turbulence and design a mesh suitable for LES. The velocity field, spray characteristics, temperature, and combustion products are compared against the experimental data reported in the literature. Both simulations show similar results, differing mainly in the spray characteristics (size of the injected droplets). This seems to be related to the parameters of the Rosin-Rammler distribution used by the LISA model. Although a fraction of the spray evaporates downstream of the reaction zone, the fraction of unburned fuel is underestimated, which is expected considering the assumption of infinitely fast reaction. There is no formation of a vortex breakdown nor strong recirculation zone in the flow (due to the relatively low swirl number); nevertheless, some coherent structures are reproduced, showing the capacity of LES to capture the bigger scales of turbulence.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article. Some or all data, models, or code generated or used during the study are available in a repository online in accordance with funder data retention policies: www-s.nist.gov/srmors/view_msds.cfm?srm=1837.

Acknowledgments

The authors gratefully acknowledge the financial support by CONACyT-AEM (BS-66085) and Cathedra’s CONACyT (2321) projects; they also acknowledge the computational support by TESE-SEP-TecNM 2018 program and GINPAC from the MCIAE SEPI-ESIME TICOMAN IPN for Aerodynamic laboratory assistance.

References

Bull, J. R., and A. Jameson. 2016. “Explicit filtering and exact reconstruction of the sub-filter stresses in large eddy simulation.” J. Comput. Phys. 306 (Jan): 117–136. https://doi.org/10.1016/j.jcp.2015.11.037.
Collazo, J., J. Porteiro, D. Patiño, J. L. Miguez, E. Granada, and J. Moran. 2009. “Simulation and experimental validation of a methanol burner.” Fuel 88 (2): 326–334. https://doi.org/10.1016/j.fuel.2008.09.003.
Crocker, D., M. Giridharan, J. Widmann, and C. Presser. 2000. “Simulation of methanol combustion in the NIST reference spray combustor.” In Combustion, fire, and computation in the NIST reference spray combustor. New York: ASME.
Jenny, P., D. Roekaerts, and N. Beishuizen. 2012. “Modeling of turbulent dilute spray combustion.” Prog. Energy Combust. Sci. 38 (6): 846–887. https://doi.org/10.1016/j.pecs.2012.07.001.
Kim, W.-W., and S. Menon. 1997. “Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows.” In Proc., 35th Aerospace Sciences Meeting and Exhibit. Reston, VA: American Institute of Aeronautics and Astronautics.
Kolmogorov, A. N. 1991. “The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers.” Proc. R. Soc. London 434 (1890): 9–13. https://doi.org/https://doi.org/10.1098/rspa.1991.0075.
Lindstedt, R. P., and S. A. Louloudi. 2002. “Joint scalar transported probability density function modeling of turbulent methanol jet diffusion flames.” Proc. Combus. Inst. 29 (2): 2147–2154. https://doi.org/https://doi.org/10.1016/S1540-7489(02)80261-9.
Lixing, Z., L. I. Ke, and W. Fang. 2012. “Advances in large-eddy simulation of two-phase combustion (I) LES of spray combustion.” Chin. J. Chem. Eng. 20 (2): 205–211. https://doi.org/10.1016/S1004-9541(12)60380-2.
Magnussen, B. 1981. “On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow.” In Proc., 19th Aerospace Sciences Meeting. Reston, VA: American Institute of Aeronautics and Astronautics.
NIST. 2009. “Benchmark spray combustion database—Geometry and initial/boundary conditions.” Accessed June 1, 2018. https://webbook.nist.gov/chemistry/special/spray-combust/baseline-case/.
O’Rourke, P. J. 1981. Collective drop effects on vaporizing liquid sprays. Los Alamos, NM: Los Alamos National Lab.
Pope, S. B. 2000. Turbulent flows. 1st ed. Cambridge, UK: Cambridge University Press.
Schmidt, D. P., I. Nouar, P. K. Senecal, J. Rutland, J. K. Martin, R. D. Reitz, and J. A. Hoffman. 1999. “Pressure-swirl atomization in the near field.” SAE Trans. 108 (Jan): 471–484.
Taylor, G. I. 1935. “Statistical theory of turbulence.” Proc. R. Soc. London Series A 151 (Feb): 421–444. https://doi.org/10.1098/rspa.1935.0158.
Veynante, D., and L. Vervisch. 2002. “Turbulent combustion modeling.” Prog. Energy Combust. Sci. 28 (Apr): 193–266. https://doi.org/10.1016/S0360-1285(01)00017-X.
Weber, C. 1931. “Zum Zerfall eines Flüssigkeitsstrahles.” J. Appl. Math. Mech. 11 (2): 136–154. https://doi.org/10.1002/zamm.19310110207.
Widmann, J., S. Charagundla, C. Presser, and A. Heckert. 1999. Benchmark experimental database for multiphase combustion model input and validation: Baseline case. Gaithersburg, MD: NIST.
Widmann, J. F., and C. Presser. 2002. “A benchmark experimental database for multiphase combustion model input and validation.” Combust. Flame 129 (1): 47–86. https://doi.org/10.1016/S0010-2180(01)00374-1.
Zhou, L. X., X. L. Chen, C. G. Zheng, and J. Yin. 2000. “Second-order moment turbulence-chemistry models for simulating NOx formation in gas combustion.” Fuel 79 (11): 1289–1301. https://doi.org/10.1016/S0016-2361(99)00283-5.
Zhu, S., D. Roekaerts, and T. V. Meer. 2011. “Numerical study of a methanol spray flame.” In Proc., European Combustion Meeting, 1–8. Cardiff, England: British Section of the Combustion Institute.

Information & Authors

Information

Published In

Go to Journal of Aerospace Engineering
Journal of Aerospace Engineering
Volume 35Issue 1January 2022

History

Received: Feb 8, 2021
Accepted: Jul 26, 2021
Published online: Oct 8, 2021
Published in print: Jan 1, 2022
Discussion open until: Mar 8, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Guillermo Guevara-Morales [email protected]
Resercher, Division of Aerospace Engineering and Fluid Mechanics, Queen Mary Univ. of London, Mile End Rd. Bethnal Green, London E1 4NS, UK. Email: [email protected]
Oliver M. Huerta-Chavez [email protected]
Researcher-Professor, Departamento de Propulsión y Aerodinámica sin Control, Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Ticomán, Instituto Politécnico Nacional, Avenida Ticomán 600, San José Ticomán, Gustavo A. Madero, Ciudad de México 07340, México (corresponding author). Email: [email protected]
Isidro Castorena [email protected]
Resercher, Département du Aérodynamiques, Energétiques et Propulsion and Departamento de Propulsión y Aerodinámica sin Control, Institut Supérieur de l'Aéronautique et de l'Espace POITIERS, Téléport 2, 1 Ave. Clément Ader, Chasseneuil-du-Poitou 86360, France. Email: [email protected]
Resercher, Departamento de Propulsión y Aerodinámica sin Control, Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Ticomán, Instituto Politécnico Nacional, Avenida Ticomán 600, San José Ticomán, Gustavo A. Madero, Ciudad de México 07340, México. ORCID: https://orcid.org/0000-0002-1141-6357. Email: [email protected]
Jaime Cruz-Cruz [email protected]
Resercher, Departamento de Propulsión y Aerodinámica sin Control, Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Ticomán, Instituto Politécnico Nacional, Avenida Ticomán 600, San José Ticomán, Gustavo A. Madero, Ciudad de México 07340, México. Email: [email protected]
Resercher, Departamento de Propulsión y Aerodinámica sin Control, Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Ticomán, Instituto Politécnico Nacional, Avenida Ticomán 600, San José Ticomán, Gustavo A. Madero, Ciudad de México 07340, México. ORCID: https://orcid.org/0000-0002-3297-6409. Email: [email protected]
Master Student, Departamento de Propulsión y Aerodinámica sin Control, Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Ticomán, Instituto Politécnico Nacional, Avenida Ticomán 600, San José Ticomán, Gustavo A. Madero, Ciudad de México 07340, México. ORCID: https://orcid.org/0000-0001-5285-011X. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share