Technical Papers
Jun 25, 2021

Statistical Analysis of Peak Force Atomic Force Microscopy Data for the Interphase Thickness and Modulus in Carbon Fiber–Reinforced Epoxy Resin Composites Exposed to Different Heat and Humidity Levels

Publication: Journal of Aerospace Engineering
Volume 34, Issue 5

Abstract

Heat and moisture influence the interphase properties of polymer matrix composite significantly. The composite samples were exposed to different levels of heat and moisture. The advanced peak force–based quantitative nanomechanics mapping technique with the Derjaguin-Muller-Toropov (DMT) model was used to investigate the interphase at the submicron-scale and nanoscale. The interphase’s width and elastic modulus depend on its location, degree of moisture saturation, the extent of expansion, and shrinkage mechanisms. The interphase’s width is uneven and river-like. The interphase thickness and DMT modulus were collected at 15 sites for each condition and 15 section lines at each location. The Weibull model linear regression and the moments method with various estimators were employed. Weibull results show that the local moisture content affects the interphase thickness more than elastic modulus. The Weibull analysis shows the enhancement of the interphase thickness from 9.5 to 95 nm and reduction of the interphase modulus from 22.8 to 19.6 GPa, as the local moisture content reaches 95%.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This research was supported by Pipe Reconstruction Inc., Phoenix, Arizona, under Grant Nos. FP00007582, FP00012242, and FP00022970. We acknowledge the use of facilities within the Eyring Materials Center at Arizona State University.

References

Arias, J. P. M., M. Escobar, and A. Vazquez. 2014. “Modeling of dynamic mechanical properties of epoxy and epoxy-phenolic reinforced with multi-wall carbon nanotubes.” J. Compos. Mater. 48 (16): 2001–2009. https://doi.org/10.1177/0021998313494096.
Belec, L., T. H. Nguyen, D. L. Nguyen, and J. F. Chailan. 2014. “Comparative effects of humid tropical weathering and artificial ageing on a model composite property from nano- to macro-scale.” Composites, Part A 68 (Jan): 235–241.
Ben Salem, N., G. Bresson, J. Jumel, M. E. R. Shanahan, S. Bellut, and F. Lavelle. 2013. “Weibull analysis of stiffness and strength in bulk epoxy adhesives reinforced with particles.” J. Adhes. Sci. Technol. 27 (21): 2278. https://doi.org/10.1080/01694243.2013.771097.
Bergman, B. 1984. “On the estimation of the Weibull modulus.” J. Mater. Sci. Lett. 3 (8): 689. https://doi.org/10.1007/BF00719924.
Binnig, G., C. F. Quate, and C. Gerber. 1986. “Atomic force microscope.” Phys. Rev. Lett. 56 (9): 930–933. https://doi.org/10.1103/PhysRevLett.56.930.
Chyasnavichyus, M., S. L. Young, and V. V. Tsukruk. 2015. “Recent advances in micromechanical characterization of polymer, biomaterial, and cell surfaces with atomic force microscopy.” Jpn. J. Appl. Phys. 54 (8): 08LA02. https://doi.org/10.7567/JJAP.54.08LA02.
Coroller, G., A. Lefeuvre, A. Le Duigou, A. Bourmaud, G. Ausias, T. Gaudry, and C. Baley. 2013. “Effect of flax fibers individualization on tensile failure of flax/epoxy unidirectional composite.” Composites, Part A 51 (Aug): 62–70. https://doi.org/10.1016/j.compositesa.2013.03.018.
Derjaguin, B. V., V. M. Muller, and Y. P. Toporov. 1975. “Effect of contact deformations on the adhesion of particles.” J. Colloid Interface Sci. 53 (2): 314–326. https://doi.org/10.1016/0021-9797(75)90018-1.
Giannotti, M. I., M. J. Galante, P. A. Oyanguren, and C. I. Vallo. 2003. “Role of intrinsic flaws upon flexural behavior of a thermoplastic modified epoxy resin.” Polym. Test 22 (4): 429–437. https://doi.org/10.1016/S0142-9418(02)00124-1.
Griepentrog, M., G. Kreamer, and B. Cappella. 2013. “Comparison of nanoindentation and AFM methods for the determination of mechanical properties of polymers.” Polym. Test. 32 (3)): 455–460. https://doi.org/10.1016/j.polymertesting.2013.01.011.
Harper, W. V., T. G. Eschenbach, and T. R. James. 2014. “Concerns about maximum likelihood estimation for the three-parameter Weibull distribution: Case study of statistical software.” Am. Stat. 65 (1): 44. https://doi.org/10.1198/tast.2011.09103.
Herruzo, E. T., A. P. Perrino, and R. Garcia. 2014. “Fast nanomechanical spectroscopy of soft matter.” Nat. Commun. 5 (1): 1–8. https://doi.org/10.1038/ncomms4126.
Hodzic, A., J. K. Kim, and Z. H. Stachurski. 2001. “Nano-indentation and nano-scratch of polymer/glass interfaces. II: Model of interphases in water aged composite materials.” Polymer (Guildf) 42 (13): 5701–5710. https://doi.org/10.1016/S0032-3861(01)00029-5.
Jayatilaka, A., and K. Trustrum. 1977. “Statistical approach to brittle fracture.” J. Mater. Sci. 12 (7): 1426. https://doi.org/10.1007/BF00540858.
Jones, F. R. 2010. “A review of interphase formation and design in fibre-reinforced composites.” J. Adhes. Sci. Technol. 24 (1): 171–202. https://doi.org/10.1163/016942409X12579497420609.
Khalili, A., and K. Kromp. 1991. “Statistical properties of Weibull estimators.” J. Mater. Sci. 26 (24): 6741. https://doi.org/10.1007/BF02402669.
Mamalis, D., J. J. Murray, J. McClements, D. Tsikritsis, V. Koutsos, E. D. McCarthy, and C. M. O’Bradaigh. 2019. “Novel carbon-fibre powder-epoxy composites: Interface phenomena and interlaminar fracture behaviour.” Composites, Part B 174 (Oct): 107012. https://doi.org/10.1016/j.compositesb.2019.107012.
Mercadier, C., and P. Soulier. 2012. “Optimal rates of convergence in the Weibull model based on kernel-type estimators.” Stat. Probab. Lett. 82 (3): 548. https://doi.org/10.1016/j.spl.2011.11.022.
Moosburger-Will, J., J. Jäger, S. Horn, and C. Wellhausen. 2012. “Investigation of phase morphology of polyetherimide-toughened epoxy resin by scanning probe microscopy.” Polym. Test. 31 (8): 1008–1018. https://doi.org/10.1016/j.polymertesting.2012.08.001.
Moosburger-Will, J., J. Jäger, J. Strauch, M. Bauer, S. Strobl, F. F. Linscheid, and S. Horn. 2017. “Interphase formation and fiber matrix adhesion in carbon fiber reinforced epoxy resin: Influence of carbon fiber surface chemistry.” Compos. Interfaces 24 (7): 691–710. https://doi.org/10.1080/09276440.2017.1267513.
Niu, Y.-F., Y. Yang, and X.-R. Wang. 2018. “Investigation of the interphase structures and properties of carbon fiber reinforced polymer composites exposed to hydrothermal treatments using peak force quantitative nanomechanics technique.” Polym. Compos. 39 (S2): E791–E796. https://doi.org/10.1002/pc.24245.
Nohales, A., L. Solar, I. Porcar, C. I. Vallo, and C. M. Gomez. 2006. “Morphology, flexural, and thermal properties of sepiolite modified epoxy resins with different curing agents.” Eur. Polym. J. 42 (11): 3093. https://doi.org/10.1016/j.eurpolymj.2006.07.018.
Peterlik, H. 1995. “The validity of Weibull estimators.” J. Mater. Sci. 30 (8): 1972. https://doi.org/10.1007/BF00353020.
Pittenger, B., N. Erina, and C. Su. 2010. “Quantitative mechanical property mapping at the nanoscale with PeakForce QNM.” Accessed April 5, 2012. http://nanoscaleworld.bruker-axs.com/nanoscaleworld/media/p/418.aspx.
Rahman, M. M., M. Hosur, S. Zainuddin, N. Jahan, E. B. Miller-Smith, and S. Jeelani. 2014. “Enhanced tensile performance of epoxy and e-glass/epoxy composites by randomly-oriented amino functionalized MWCNTs at low contents.” J. Compos. Mater. 49 (7): 759–770. https://doi.org/10.1177/0021998314525977.
Riccardi, C. C., and C. I. Vallo. 2002. “Estimation of Weibull parameters for the flexural strength of PMMA-based bone cements.” Polym. Eng. Sci. 42 (6): 1260. https://doi.org/10.1002/pen.11029.
Sader, J. E., J. A. Sanelli, B. D. Adamson, J. P. Monty, X. Wei, S. A. Crawford, J. R. Friend, I. Marusic, P. Mulvaney, and E. J. Bieske. 2012. “Spring constant calibration of atomic force microscope cantilevers of arbitrary shape.” Rev. Sci. Instrum. 83 (10): 1–16. https://doi.org/10.1063/1.4757398.
Smolyakov, G., S. Pruvost, L. Cardoso, B. Alonso, E. Belamie, and J. Duchet-Rumeau. 2016. “AFM PeakForce QNM mode: Evidencing nanometre-scale mechanical properties of chitin-silica hybrid nanocomposites.” Carbohydr. Polym. 151 (20): 373–380. https://doi.org/10.1016/j.carbpol.2016.05.042.
Trustrum, K., and A. Jayatilaka. 1983. “Applicability of Weibull analysis for brittle materials.” J. Mater. Sci. 18 (9): 2765. https://doi.org/10.1007/BF00547593.
Vallo, C. I. 2002. “Influence of load type on flexural strength of a bone cement based on PMMA.” Polym. Test 21 (7): 793. https://doi.org/10.1016/S0142-9418(02)00013-2.
Wang, D., and T. P. Russell. 2018. “Advances in atomic force microscopy for probing polymer structure and properties.” Macromolecules 51 (1): 3–24. https://doi.org/10.1021/acs.macromol.7b01459.
Wang, Y., and T. H. Hahn. 2007. “AFM characterization of the interfacial properties of carbon fiber reinforced polymer composites subjected to hygrothermal treatments.” Compos. Sci. Technol. 67 (1): 92–101. https://doi.org/10.1016/j.compscitech.2006.03.030.
Yekani Fard, M., A. Chattopadhyay, and Y. Liu. 2014a. “Influence of load type and stress gradient on flexural strength of an epoxy resin polymeric material.” J. Aerosp. Eng. 27 (1): 55–63. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000228.
Yekani Fard, M., Y. Liu, and A. Chattopadhyay. 2012. “Characterization of epoxy resin including strain rate effects using digital image correlation system.” J. Aerosp. Eng. 25 (2): 308–319. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000127.
Yekani Fard, M., B. Raji, and A. Chattopadhyay. 2014b. “The ratio of flexural strength to uniaxial tensile strength in bulk epoxy resin polymeric materials.” Polym. Test. 40 (Dec): 156–162. https://doi.org/10.1016/j.polymertesting.2014.09.002.
Yekani Fard, M., B. Raji, and H. Pankretz. 2020a. “Correlation of nanoscale interface debonding and multimode fracture in polymer carbon composites with long-term hygrothermal effects.” J. Mech. Mater. 150 (Nov): 103601. https://doi.org/10.1016/j.mechmat.2020.103601.
Yekani Fard, M., B. Raji, and H. Pankretz. 2020b. “Time-scale through-thickness interphase in polymer matrix composites including hygrothermal treatment.” Polym. Test. 83 (Mar): 106365. https://doi.org/10.1016/j.polymertesting.2020.106365.
Yekani Fard, M., B. Raji, J. Woodward, and M. Padilla. 2019a. “Experimental characterization of damage mechanisms of seamless net-shaped circular pre-form and overlapped stitched composite pipes.” Polym. Test. 78 (Sep): 105934. https://doi.org/10.1016/j.polymertesting.2019.105934.
Yekani Fard, M., B. Raji, J. M. Woodward, and A. Chattopadhyay. 2019b. “Characterization of interlaminar fracture modes I, II, and I-II of carbon/epoxy composites including in-service related bonding quality conditions.” J. Polym. Test. 77 (Aug): 105894. https://doi.org/10.1016/j.polymertesting.2019.05.010.
Young, T. J., M. A. Monclus, T. L. Burnett, W. R. Broughton, S. L. Ogin, and P. A. Smith. 2011. “The use of the PeakForce quantitative nanomechanical mapping AFM-based method for high-resolution Young’s modulus measurement of polymers.” Meas. Sci. Technol. 22 (12): 125703. https://doi.org/10.1088/0957-0233/22/12/125703.
Youssef, G., G. Pessoa, and S. Nacy. 2019. “Effect of elevated operating temperature on the dynamic mechanical performance of e-glass/epoxy composite.” Composites, Part B 173 (Sep): 106937. https://doi.org/10.1016/j.compositesb.2019.106937.
Zare, Y., and K. Y. Rhee. 2019. “Following the morphological and thermal properties of PLA/PEO blends containing carbon nanotubes (CNTs) during hydrolytic degradation.” Composites, Part B 175 (Oct): 107132. https://doi.org/10.1016/j.compositesb.2019.107132.
Zhou, W., P. Mikulova, Y. Fan, K. Kikuchi, N. Nomura, and A. Kawasaki. 2019. “Interfacial reaction induced efficient load transfer in few-layer graphene reinforced Al matrix composites for high-performance conductor.” Composites, Part B 167 (Jun): 93–99. https://doi.org/10.1016/j.compositesb.2018.12.018.

Information & Authors

Information

Published In

Go to Journal of Aerospace Engineering
Journal of Aerospace Engineering
Volume 34Issue 5September 2021

History

Received: Jan 15, 2021
Accepted: Apr 8, 2021
Published online: Jun 25, 2021
Published in print: Sep 1, 2021
Discussion open until: Nov 25, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Assistant Research Professor, School for Engineering of Matter, Transport and Energy, Arizona State Univ., Tempe, AZ 85287 (corresponding author). ORCID: https://orcid.org/0000-0002-1371-3304. Email: [email protected]
Director, Pipe Reconstruction Inc., 9308 E Raintree Dr., Scottsdale, AZ 85260. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Interphase of Single and Double CNT Networks with Surrounding Polymer in Atomic Force Microscopy, AIAA SCITECH 2023 Forum, 10.2514/6.2023-2231, (2023).
  • CNT Network Size/Interphase and Multimode Interlaminar Fracture of CNT Buckypaper Nanocomposites, AIAA SCITECH 2023 Forum, 10.2514/6.2023-1133, (2023).
  • Stochastic multiscale multimode interlaminar fracture toughness of buckypaper nanocomposites, International Journal of Mechanical Sciences, 10.1016/j.ijmecsci.2022.107798, 237, (107798), (2023).
  • Carbon nanotube network and interphase in buckypaper nanocomposites using atomic force microscopy, International Journal of Mechanical Sciences, 10.1016/j.ijmecsci.2021.106811, 212, (106811), (2021).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share