Technical Papers
Jan 19, 2021

Semianalytical Development of Dynamic Instability and Response of a Multiscale Laminated Hybrid Composite Plate

Publication: Journal of Aerospace Engineering
Volume 34, Issue 3

Abstract

The use of carbon nanotubes (CNTs) in augmenting the mechanical properties of fiber-reinforced laminated composites is a fact. In this paper, the semianalytical studies on the dynamic instability behavior and linear and nonlinear responses of a randomly distributed CNT and fiber-reinforced interlamina hybrid composite (CNTFRHC) plate with and without damping under time-dependent in-plane uniaxial uniform compression loading are presented. Each lamina of the laminate is made of multiscale materials such as CNT/polymer/fiber. The effective mechanical properties of the lamina are estimated in two steps. First, the Eshelby–Mori–Tanaka technique is used to compute the effective mechanical properties of randomly distributed CNTs in a polymer matrix (i.e., CNT-embedded matrix). Second, the effective mechanical properties of the CNT-embedded matrix reinforced with fiber (either carbon or glass) are estimated by using various homogenization techniques. The plate is modeled by using higher-order shear deformation theory (HSDT) and von Kármán nonlinearity. Governing partial differential equations of the CNTFRHC plate are obtained by Hamilton’s principle and reduced to Mathieu–Hill equations by using the Galerkin method. Mathieu–Hill equations are solved by the Bolotin method to trace the boundaries of the instability region corresponding periods T and 2T. Finally, the influence of different parameters such as CNT agglomerations, CNT mass fraction, edge-to-thickness ratio, compression preloading, boundary conditions, and damping on the dynamic instability region of the CNTFRHC plates are studied in detail. Numerical results provide useful insights into the selection of parameters with different combinations for the desired design of the CNTFRHC plate against instability. Furthermore, to know the characteristics of the instability region of a CNTFRHC plate such as the existence of beats, dependence on geometric nonlinearity, and forcing frequency for which the linear and nonlinear responses with and without damping in both stable and unstable regions are presented.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, and code that support the findings of this study are available from the corresponding author upon reasonable request.

References

Adhikari, B., and B. N. Singh. 2019. “Dynamic response of FG-CNT composite plate resting on an elastic foundation based on higher-order shear deformation theory.” J. Aerosp. Eng. 32 (5): 04019061. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001052.
Arani, A. G., S. Maghamikia, M. Mohammadimehr, and A. Arefmanesh. 2011. “Buckling analysis of laminated composite rectangular plates reinforced by SWCNTs using analytical and finite element methods.” J. Mech. Sci. Technol. 25 (3): 809–820. https://doi.org/10.1007/s12206-011-0127-3.
Bellucci, S., C. Balasubramanian, F. Micciulla, and G. Rinaldi. 2007. “CNT composites for aerospace applications.” J. Exp. Nanosci. 2 (3): 193–206. https://doi.org/10.1080/17458080701376348.
Bolotin, V. V. 1964. The dynamics stability of elastic system. San Francisco: Holden-Day.
Carvalho, A., and C. G. Soares. 1996. “Dynamic response of rectangular plates of composite materials subjected to impact loads.” Compos. Struct. 34 (1): 55–63. https://doi.org/10.1016/0263-8223(95)00131-X.
Chamis, C. C. 1969. Failure criteria for filamentary composites, 1–30. Cleveland: Lewis Research Centre.
Chamis, C. C. 1974. Thermoelastic properties of unidirectional filamentary composites by a semiempirical micromechanics theory. Cleveland: Union Carbide Corporation.
Chamis, C. C. 1983. “Simplified composite micromechanics equations for hygral, thermal and mechanical properties.” Accessed February 11, 1983. https://core.ac.uk/download/pdf/42853219.pdf.
Ci, L., and J. B. Bai. 2006. “The reinforcement role of carbon nanotubes in epoxy composites with different matrix stiffness.” Compos. Sci. Technol. 66 (3–4): 599–603. https://doi.org/10.1016/j.compscitech.2005.05.020.
Ciecierska, E., A. Boczkowska, K. J. Kurzydlowski, I. D. Rosca, and S. V. Hoa. 2013. “The effect of carbon nanotubes on epoxy matrix nanocomposites.” J. Therm. Anal. Calorim. 111 (2): 1019–1024. https://doi.org/10.1007/s10973-012-2506-0.
Daghigh, H., and V. Daghigh. 2018. “Free vibration of size and temperature-dependent carbon nanotube (CNT)-reinforced composite nanoplates with CNT agglomeration.” Polym. Compos. 40 (Mar): E1479–E1494.
De Volder, M. F. L., S. H. Tawfick, R. H. Baughman, and A. J. Hart. 2013. “Carbon nanotubes: Present and future commercial applications.” Science 339 (6119): 535–539. https://doi.org/10.1126/science.1222453.
Du, C. C., and Y. H. Li. 2020. “Parametric stability and complex dynamical behavior of functionally graded rectangular thin plates subjected to in-plane inertial disturbance.” Compos. Struct. 234 (Feb): 111728. https://doi.org/10.1016/j.compstruct.2019.111728.
Eshely, J. D. 1957. “The determination of the elastic field of an ellipsoidal inclusion, and related problems.” Proc. R. Soc. London, Ser. A: Math. Phys. Sci. 241 (1226): 376–396.
Feldman, D. 2016. “Polymer nanocomposites in medicine.” J. Macromol. Sci., Pure Appl. Chem. 53 (1): 55–62. https://doi.org/10.1080/10601325.2016.1110459.
Ganapathi, M., B. P. Patel, P. Boisse, and M. Touratier. 2000. “Non-Linear dynamic stability characteristics of elastic plates subjected to periodic in-plane load.” Int. J. Non Linear Mech. 35 (3): 467–480. https://doi.org/10.1016/S0020-7462(99)00034-7.
Ganguli, S., H. Aglan, and D. Dean. 2005. “Microstructural origin of strength and toughness of epoxy nanocomposites.” J. Elastomers Plast. 37 (1): 19–35. https://doi.org/10.1177/0095244305045927.
Gibson, R. F. 2010. “A review of recent research on mechanics of multifunctional composite materials and structures.” Compos. Struct. 92 (12): 2793–2810. https://doi.org/10.1016/j.compstruct.2010.05.003.
Gojny, F. H., M. H. G. Wichmann, U. Köpke, B. Fiedler, and K. Schulte. 2004. “Carbon nanotube-reinforced epoxy-composites: Enhanced stiffness and fracture toughness at low nanotube content.” Compos. Sci. Technol. 64 (15): 2363–2371. https://doi.org/10.1016/j.compscitech.2004.04.002.
Hahn, H. T. 1980. “Simplified formulas for elastic moduli of unidirectional continuous fiber composites.” J. Compos. Tech. Res. 2: 5–7.
Hajmohammad, M. H., R. Kolahchi, M. S. Zarei, and A. H. Nouri. 2019. “Dynamic response of auxetic honeycomb plates integrated with agglomerated CNT-reinforced face sheets subjected to blast load based on visco-sinusoidal theory.” Int. J. Mech. Sci. 153–154 (Apr): 391–401. https://doi.org/10.1016/j.ijmecsci.2019.02.008.
Halpin, J. C. 1969. Effects of environmental factors on composite materials. Wright-Patterson Air Force Base, OH: Air Force Materials Laboratory.
Han, Y., and J. Elliott. 2007. “Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites.” Comput. Mater. Sci. 39 (2): 315–323. https://doi.org/10.1016/j.commatsci.2006.06.011.
Iijima, S. 1991. “Helical microtubules of graphitic carbon.” Nature 354 (6348): 56–58. https://doi.org/10.1038/354056a0.
Jin, X., Z. Wang, J. Ning, G. Xiao, E. Liu, and X. Shu. 2016. “Dynamic response of sandwich structures with graded auxetic honeycomb cores under blast loading.” Composites, Part B 106 (Dec): 206–217. https://doi.org/10.1016/j.compositesb.2016.09.037.
Jin, Y., and F. G. Yuan. 2003. “Simulation of elastic properties of single-walled carbon nanotubes.” Compos. Sci. Technol. 63 (11): 1507–1515. https://doi.org/10.1016/S0266-3538(03)00074-5.
Jones, R. M. 1975. Mechanics of composite materials. New York: Hemisphere Publishing.
Kiani, Y. 2017. “Buckling of FG-CNT-reinforced composite plates subjected to parabolic loading.” Acta Mech. 228 (4): 1303–1319. https://doi.org/10.1007/s00707-016-1781-4.
Kolahchi, R., M. Safari, and M. Esmailpour. 2016. “Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium.” Compos. Struct. 150 (Aug): 255–265. https://doi.org/10.1016/j.compstruct.2016.05.023.
Korayem, A. H., C. Y. Li, Q. H. Zhang, X. L. Zhao, and W. H. Duan. 2015. “Effect of carbon nanotube modified epoxy adhesive on CFRP-to-steel interface.” Composites, Part B 79 (Sep): 95–104. https://doi.org/10.1016/j.compositesb.2015.03.063.
Kurahatti, R. V., A. O. Surendranathan, S. A. Kori, N. Singh, A. V. R. Kumar, and S. Srivastava. 2010. “Defence applications of polymer nanocomposites.” Defence Sci. J. 60 (5): 551–563. https://doi.org/10.14429/dsj.60.578.
Lee, S. Y. 2018. “Dynamic instability assessment of carbon nanotube/fiber/polymer multiscale composite skew plates with delamination based on HSDT.” Compos. Struct. 200 (Sep): 757–770. https://doi.org/10.1016/j.compstruct.2018.05.121.
Lei, Z. X., K. M. Liew, and J. L. Yu. 2013. “Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method.” Compos. Struct. 98 (Apr): 160–168. https://doi.org/10.1016/j.compstruct.2012.11.006.
Lei, Z. X., L. W. Zhang, and K. M. Liew. 2016. “Buckling analysis of CNT reinforced functionally graded laminated composite plates.” Compos. Struct. 152 (Sep): 62–73. https://doi.org/10.1016/j.compstruct.2016.05.047.
Loja, M. A. R., and J. I. Barbosa. 2020. “In-plane functionally graded plates: A study on the free vibration and dynamic instability behaviours.” Compos. Struct. 237 (Apr): 111905. https://doi.org/10.1016/j.compstruct.2020.111905.
Lourie, O., and H. D. Wagner. 1998. “Evaluation of Young’s modulus of carbon nanotubes by micro-Raman spectroscopy.” J. Mater. Res. 13 (9): 2418–2422. https://doi.org/10.1557/JMR.1998.0336.
Malekzadeh, P., and M. Shojaee. 2013. “Buckling analysis of quadrilateral laminated plates with carbon nanotubes reinforced composite layers.” Thin Walled Struct. 71 (Oct): 108–118. https://doi.org/10.1016/j.tws.2013.05.008.
Mehar, K., and S. K. Panda. 2018. “Dynamic response of functionally graded carbon nanotube reinforced sandwich plate.” IOP Conf. Ser. Mater. Sci. Eng. 338 (1): 012017. https://doi.org/10.1088/1757-899X/338/1/012017.
Mehrabadi, S. J., B. S. Aragh, V. Khoshkhahesh, and A. Taherpour. 2012. “Mechanical buckling of nanocomposite rectangular plate reinforced by aligned and straight single-walled carbon nanotubes.” Composites, Part B 43 (4): 2031–2040. https://doi.org/10.1016/j.compositesb.2012.01.067.
Milo, S., P. Shaffer, and A. H. Windle. 1999. “Fabrication and characterization of carbon nanotube/poly (vinyl alcohol) composites.” Adv. Mater. 11 (1): 937–941.
Mohanty, P., and R. K. Behera. 2020. “Dynamic response of FGM Kirchhoff’s plate.” In Advances in applied mechanical engineering: Lecture notes in mechanical engineering, edited by H. Voruganti, K. Kumar, P. Krishna, and X. Jin. New York: Springer.
Moorthy, J., J. N. Reddy, and R. H. Plaut. 1990. “Parametric instability of laminated composite plates with transverse shear deformation.” Int. J. Solids Struct. 26 (7): 801–811. https://doi.org/10.1016/0020-7683(90)90008-J.
Moradi-Dastjerdi, R., and H. Malek-Mohammadi. 2017. “Free vibration and buckling analyses of functionally graded nanocomposite plates reinforced by carbon nanotube.” Mech. Adv. Compos. Struct. 4 (1): 59–73.
Mori, T., and K. Tanaka. 1973. “Average stress in matrix and average elastic energy of materials with misfitting inclusions.” Acta Metall. 21 (5): 571–574. https://doi.org/10.1016/0001-6160(73)90064-3.
Odegard, G. M., T. S. Gates, L. M. Nicholson, and K. E. Wise. 2002. “Equivalent-continuum modeling of nano-structured materials.” Compos. Sci. Technol. 62 (14): 1869–1880. https://doi.org/10.1016/S0266-3538(02)00113-6.
Odegard, G. M., T. S. Gates, K. E. Wise, C. Park, and E. J. Siochi. 2003. “Constitutive modeling of nanotube-reinforced polymer composites.” Compos. Sci. Technol. 63 (11): 1671–1687. https://doi.org/10.1016/S0266-3538(03)00063-0.
Ostiguy, G. L., L. P. Samson, and H. Nguyen. 1993. “On the occurrence of simultaneous resonances in parametrically-excited rectangular plates.” J. Vib. Acoust. 115 (3): 344–352. https://doi.org/10.1115/1.2930355.
Pan, J., and L. Bian. 2017. “Influence of agglomeration parameters on carbon nanotube composites.” Acta Mech. 228 (6): 2207–2217. https://doi.org/10.1007/s00707-017-1820-9.
Park, J. M., D. S. Kim, J. R. Lee, and T. W. Kim. 2003. “Nondestructive damage sensitivity and reinforcing effect of carbon nanotube/epoxy composites using electro-micromechanical technique.” Mater. Sci. Eng., C 23 (6–8): 971–975. https://doi.org/10.1016/j.msec.2003.09.131.
Pathi, J. L., and R. Vasudevan. 2019. “Numerical investigation of dynamic instability of a rotating CNT reinforced composite plate.” In Vol. 2057 of AIP Conf. Proc. College Park, MD: American Institute of Physics. https://doi.org/10.1063/1.5085574.
Patra, A., and N. Mitra. 2014. “Interface fracture of sandwich composites: Influence of MWCNT sonicated epoxy resin.” Compos. Sci. Technol. 101 (Sep): 94–101. https://doi.org/10.1016/j.compscitech.2014.07.006.
Qian, D., E. C. Dickey, R. Andrews, and T. Rantell. 2000. “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites.” Appl. Phys. Lett. 76 (20): 2868–2870. https://doi.org/10.1063/1.126500.
Quan, T. Q., V. M. Anh, V. Mahesh, and N. D. Duc. 2020. “Vibration and nonlinear dynamic response of imperfect sandwich piezoelectric auxetic plate.” Mech. Adv. Mater. Struct. 1–11. https://doi.org/10.1080/15376494.2020.1752864.
Rafiee, M., X. Q. He, and K. M. Liew. 2014. “Non-linear dynamic stability of piezoelectric functionally graded carbon nanotube-reinforced composite plates with initial geometric imperfection.” Int. J. Non Linear Mech. 59 (Jan): 37–51. https://doi.org/10.1016/j.ijnonlinmec.2013.10.011.
Reddy, J. N. 2003. Mechanics of laminated composite plates and shells: Theory and analysis. 2nd ed. New York: CRC Press.
Rostami, R., and M. Mohammadimehr. 2020. “Dynamic stability and bifurcation analysis of sandwich plate with considering FG core and FG-CNTRC face sheets.” J. Sandwich Struct. Mater. 1–30. https://doi.org/10.1177/1099636220909766.
Sahoo, R., and B. N. Singh. 2015. “Dynamic instability of laminated composite and sandwich plates using a new inverse hyperbolic zigzag theory.” J. Aerosp. Eng. 28 (4): 04014109. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000440.
Salvetat, J.-P., J. M. Bonard, N. H. Thomson, A. J. Kulik, L. Forr´o, W. Benoit, and L. Zuppiroli. 1999. “Mechanical properties of carbon nanotubes composites.” Appl. Phys. A Mater. Sci. Process. 69 (2): 255–260. https://doi.org/10.1007/s003390050999.
Sankar, A., S. Natarajan, and M. Ganapathi. 2016. “Dynamic instability analysis of sandwich plates with CNT reinforced facesheets.” Compos. Struct. 146 (Jun): 187–200. https://doi.org/10.1016/j.compstruct.2016.03.026.
Schadler, L. S., S. C. Giannaris, and P. M. Ajayan. 1998. “Load transfer in carbon nanotube epoxy composites.” Appl. Phys. Lett. 73 (26): 3842–3844. https://doi.org/10.1063/1.122911.
Scharnd, A. M., and T. B. Tolle. 2006. “Carbon nanotube and epoxy composites for military applications.” Carbon Nanotech. 633–675. https://doi.org/10.1016/B978-044451855-2/50021-8.
Shen, W. Q., and N. Jones. 1993. “Dynamic response and failure of fully clamped circular plates under impulsive loading.” Int. J. Impact Eng. 13 (2): 259–278. https://doi.org/10.1016/0734-743X(93)90096-P.
Shi, D. L., X. Q. Feng, Y. Y. Huang, K. C. Hwang, and H. Gao. 2004. “The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites.” J. Eng. Mater. Technol. 126 (3): 250–257. https://doi.org/10.1115/1.1751182.
Soldatos, K. P. 1991. “A refined laminated plate and shell theory with applications.” J. Sound Vib. 144 (1): 109–129. https://doi.org/10.1016/0022-460X(91)90736-4.
Song, Z. G., L. W. Zhang, and K. M. Liew. 2016. “Dynamic responses of CNT reinforced composite plates subjected to impact loading.” Composites, Part B 99 (Aug): 154–161. https://doi.org/10.1016/j.compositesb.2016.06.034.
Subbaraj, K., and K. A. Dokainish. 1989. “A survey of direct time-integration methods in computational structural dynamics-II, implicit methods.” Comput. Struct. 32 (6): 1387–1401. https://doi.org/10.1016/0045-7949(89)90315-5.
Sun, X., and W. Zhao. 2005. “Prediction of stiffness and strength of single-walled carbon nanotubes by molecular-mechanics based finite element approach.” Mater. Sci. Eng., A 390 (1–1): 366–371. https://doi.org/10.1016/j.msea.2004.08.020.
Tam, D. K. Y., S. Ruan, P. Gao, and T. Yu. 2012. “High-performance ballistic protection using polymer nanocomposites.” In Advances in military textiles and personal equipment, 213–237. Sawston: Woodhead Publishing. https://doi.org/10.1533/9780857095572.2.213.
Tasi, S. W. 1964. Structural behaviour of composite materials. Washington, DC: National Aeronautics and Space Administration.
Tasi, S. W. 1965. Strength characteristics of composite materials. Washington, DC: National Aeronautics and Space Administration.
Tasi, S. W., D. F. Adamas, and D. R. Doner. 1966. Analysis of Composite structures. Washington, DC: National Aeronautics and Space Administration.
Thanh, N. V., N. D. Khoa, N. D. Tuan, P. Tran, and N. D. Duc. 2017. “Nonlinear dynamic response and vibration of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shear deformable plates with temperature-dependent material properties and surrounded on elastic foundations.” J. Therm. Stresses 40 (10): 1254–1274. https://doi.org/10.1080/01495739.2017.1338928.
Tornabene, F., M. Bacciocchi, N. Fantuzzi, and J. N. Reddy. 2017. “Multiscale approach for three-phase CNT/polymer/ fiber laminated nanocomposite structures.” Supplement, Polym. Compos. 40 (S1): E102–E126. https://doi.org/10.1002/pc.24520.
Treacy, M. M. J., T. W. Ebbesen, and J. M. Gibson. 1996. “Exceptionally high Young’s modulus observed for individual carbon nanotubes.” Nature 381 (6584): 678–680. https://doi.org/10.1038/381678a0.
Vigolo, B., A. Pénicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, and P. Poulin. 2000. “Macroscopic fibers and ribbons of oriented carbon nanotubes.” Science 290 (5495): 1331–1334. https://doi.org/10.1126/science.290.5495.1331.
Wang, M., Z. M. Li, and P. Qiao. 2016. “Semi-analytical solutions to buckling and free vibration analysis of carbon nanotube-reinforced composite thin plates.” Compos. Struct. 144 (Jun): 33–43. https://doi.org/10.1016/j.compstruct.2016.02.025.
Wang, S., and D. J. Dawe. 2002. “Dynamic instability of composite laminated rectangular plates and prismatic plate structures.” Comput. Methods Appl. Mech. Eng. 191 (17–18): 1791–1826. https://doi.org/10.1016/S0045-7825(01)00354-1.
Wu, C. P., and S. K. Chang. 2014. “Stability of carbon nanotube-reinforced composite plates with surface-bonded piezoelectric layers and under bi-axial compression.” Compos. Struct. 111 (May): 587–601. https://doi.org/10.1016/j.compstruct.2014.01.040.
Wu, W., Q. Wang, and W. Li. 2018. “Comparison of tensile and compressive properties of carbon/glass interlayer and intralayer hybrid composites.” Materials 11: 1–13. https://doi.org/10.3390/ma11071105.
Yao, N., and V. Lordi. 1998. “Young’s modulus of single-walled carbon nanotubes.” J. Appl. Phys. 84 (4): 1939–1943. https://doi.org/10.1063/1.368323.
Yusof, Z., Z. A. Rasid, M. Z. Hassan, S. Sapuan, S. Sarip, H. Yahaya, and F. Yakub. 2020. “The parametric instability improvement of fully anisotropic composite plates with embedded shape memory alloy.” Adv. Compos. Lett. 29 (Jan): 2633366X1989940. https://doi.org/10.1177/2633366X19899405.
Zhang, L. W., M. M. Ardestani, and K. M. Liew. 2017. “Isogeometric approach for buckling analysis of CNT-reinforced composite skew plates under optimal CNT-orientation.” Compos. Struct. 163 (Mar): 365–384. https://doi.org/10.1016/j.compstruct.2016.12.047.
Zhang, L. W., W. C. Cui, and K. M. Liew. 2015. “Vibration analysis of functionally graded carbon nanotube reinforced composite thick plates with elastically restrained edges.” Int. J. Mech. Sci. 103 (Nov): 9–21. https://doi.org/10.1016/j.ijmecsci.2015.08.021.
Zhu, P., Z. X. Lei, and K. M. Liew. 2012. “Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory.” Compos. Struct. 94 (4): 1450–1460. https://doi.org/10.1016/j.compstruct.2011.11.010.

Information & Authors

Information

Published In

Go to Journal of Aerospace Engineering
Journal of Aerospace Engineering
Volume 34Issue 3May 2021

History

Received: Jun 23, 2020
Accepted: Oct 12, 2020
Published online: Jan 19, 2021
Published in print: May 1, 2021
Discussion open until: Jun 19, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Vishal Singh [email protected]
Research Scholar, Dept. of Civil Engineering, Birla Institute of Technology and Science, Pilani Campus, Pilani 333031, India. Email: [email protected]
Rajesh Kumar [email protected]
Assistant Professor, Dept. of Civil Engineering, Birla Institute of Technology and Science, Pilani Campus, Pilani 333031, India (corresponding author). Email: [email protected]
Postgraduate Student, Dept. of Civil Engineering, Birla Institute of Technology and Science, Pilani Campus, Pilani 333031, India. ORCID: https://orcid.org/0000-0003-2957-6890. Email: [email protected]
T. Naveen Kumar [email protected]
Postgraduate Student, Dept. of Civil Engineering, Birla Institute of Technology and Science, Pilani Campus, Pilani 333031, India. Email: [email protected]
Assistant Professor, Dept. of Civil Engineering, Birla Institute of Technology and Science, Pilani Campus, Pilani 333031, India. ORCID: https://orcid.org/0000-0002-7538-653X. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share