Technical Papers
Oct 19, 2020

Stabilization of the Cyclic Response of the Ni49.9 Ti50.1 Shape Memory Actuators under Thermomechanical Loads

Publication: Journal of Aerospace Engineering
Volume 34, Issue 1

Abstract

This work is focused on the development of a novel strategy to achieve dimensional stability for 55NiTi actuators that operate at a relatively higher temperature; i.e., with an austenite finish temperature, Af, greater than 90°C. The key ingredient in this is to place the actuators in a state of significant deformations before the thermal cycling. Correspondingly, this will provide increased-stiffness regions purely due to kinematic/geometric nonlinearity effects. In turn, this effectively counteracts the tendency for cyclic evolutionary behavior inherent in the commercial NiTi material. To demonstrate the success of the new approach, modeling results are presented involving different actuators having various shapes, i.e., beams, disks, and rings, which are operating for many repeated thermal cycles under different bias load conditions, such as concentrated point force, ring line load, or distributed surface tractions.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

Atli, K. C., I. Karaman, R. D. Noebe, G. Bigelow, and D. Gaydosh. 2015. “Work production using the two-way shape memory effect in NiTi and a Ni-rich NiTiHf high-temperature shape memory alloy.” Smart Mater. Struct. 24 (12): 125023. https://doi.org/10.1088/0964-1726/24/12/125023.
Atli, K. C., I. Karaman, R. D. Noebe, and D. Gaydosh. 2013. “The effect of training on two-way shape memory effect of binary NiTi and NiTi based ternary high temperature shape memory alloys.” Mater. Sci. Eng., A 560 (Jan): 653–666. https://doi.org/10.1016/j.msea.2012.10.009.
Atli, K. C., I. Karaman, R. D. Noebe, and H. J. Maier. 2011. “Comparative analysis of the effects of severe plastic deformation and thermomechanical training on the functional stability of Ti50.5Ni24.5Pd25 high-temperature shape memory alloy.” Scr. Mater. 64 (4): 315–318. https://doi.org/10.1016/j.scriptamat.2010.10.022.
Benafan, O., A. Garg, R. D. Noebe, G. S. Bigelow, S. A. Padula II, D. J. Gaydosh, N. Schell, J. H. Mabe, and R. Vaidyanathan. 2014a. “Mechanical and functional behavior of a Ni-rich Ni50.3Ti29.7Hf20 high temperature shape memory alloy.” Intermetallics 50 (Jul): 94–107. https://doi.org/10.1016/j.intermet.2014.02.006.
Benafan, O., R. D. Noebe, S. A. Padula II, D. W. Brown, S. Vogel, and R. Vaidyanathan. 2014b. “Thermomechanical cycling of a NiTi shape memory alloy-macroscopic response and microstructural evolution.” Int. J. Plast. 56 (May): 99–118. https://doi.org/10.1016/j.ijplas.2014.01.006.
Benafan, O., R. D. Noebe, S. A. Padula, and R. Vaidyanathan. 2012. “Microstructural response during isothermal and isobaric loading of a precipitation-strengthened Ni-29.7 Ti-20Hf high-temperature shape memory alloy.” Metall. Mater. Trans. A 43 (12): 4539–4552. https://doi.org/10.1007/s11661-012-1297-z.
Benafan, O., R. D. Noebe, S. A. Padula II, A. Garg, B. Clausen, S. Vogel, and R. Vaidyanathan. 2013. “Temperature dependent deformation of the B2 austenite phase of a NiTi shape memory alloy.” Int. J. Plast. 51 (Dec): 103–121. https://doi.org/10.1016/j.ijplas.2013.06.003.
Benafan, O., S. A. Padula, H. D. Skorpenske, K. An, and R. Vaidyanathan. 2014c. “Design and implementation of a multiaxial loading capability during heating on an engineering neutron diffractometer.” Rev. Sci. Instrum. 85 (10): 103901. https://doi.org/10.1063/1.4896042.
Calkins, F. T., and J. H. Mabe. 2010. “Shape memory alloy based morphing aerostructures.” J. Mech. Des. 132 (11): 111012. https://doi.org/10.1115/1.4001119.
Chau, E. T. F., C. M. Friend, D. M. Allen, J. Hora, and J. R. Webster. 2006. “A technical and economic appraisal of shape memory alloys for aerospace applications.” Mater. Sci. Eng., A 438 (Nov): 589–592. https://doi.org/10.1016/j.msea.2006.02.201.
Cisse, C., W. Zaki, and T. B. Zineb. 2016. “A review of modeling techniques for advanced effects in shape memory alloy behavior.” Smart Mater. Struct. 25 (10): 103001. https://doi.org/10.1088/0964-1726/25/10/103001.
Dhakal, B., D. E. Nicholson, A. F. Saleeb, S. A. Padula, II, and R. Vaidyanathan. 2016. “Three-dimensional deformation response of a NiTi shape memory helical-coil actuator during thermomechanical cycling: Experimentally validated numerical model.” Smart Mater. Struct. 25 (9): 095056. https://doi.org/10.1088/0964-1726/25/9/095056.
Hartl, D. J., and D. C. Lagoudas. 2007. “Aerospace applications of shape memory alloys.” Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng. 221 (4): 535–552. https://doi.org/10.1243/09544100JAERO211.
Hartl, D. J., D. C. Lagoudas, F. T. Calkins, and J. H. Mabe. 2009. “Use of a Ni60Ti shape memory alloy for active jet engine chevron application. I: Thermomechanical characterization.” Smart Mater. Struct. 19 (1): 015020. https://doi.org/10.1088/0964-1726/19/1/015020.
Jani, J. M., M. Leary, A. Subic, and M. A. Gibson. 2014. “A review of shape memory alloy research, applications and opportunities.” Mater. Des. 56 (Apr): 1078–1113. https://doi.org/10.1016/j.matdes.2013.11.084.
Karakoc, O., C. Hayrettin, A. Evirgen, R. Santamarta, D. Canadinc, R. W. Wheeler, S. J. Wang, D. C. Lagoudas, and I. Karaman. 2019. “Role of microstructure on the actuation fatigue performance of Ni-Rich NiTiHf high temperature shape memory alloys.” Acta Mater. 175 (Aug): 107–120. https://doi.org/10.1016/j.actamat.2019.05.051.
Lecce, L. 2014. Shape memory alloy engineering: For aerospace, structural and biomedical applications. Oxford, UK: Elsevier.
Luo, H. Y., and E. W. Abel. 2007. “A comparison of methods for the training of NiTi two-way shape memory alloy.” Smart Mater. Struct. 16 (6): 2543. https://doi.org/10.1088/0964-1726/16/6/058.
Nespoli, A., S. Besseghini, S. Pittaccio, E. Villa, and S. Viscuso. 2010. “The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators.” Sens. Actuators, A 158 (1): 149–160. https://doi.org/10.1016/j.sna.2009.12.020.
Nicholson, D. E., O. Benafan, S. A. Padula, B. Clausen, and R. Vaidyanathan. 2018. “Loading path and control mode effects during thermomechanical cycling of polycrystalline shape memory NiTi.” Shape Memory Superelasticity 4 (1): 143–157. https://doi.org/10.1007/s40830-017-0136-x.
Nicholson, D. E., S. A. Padula, O. Benafan, and R. Vaidyanathan. 2017. “Texture evolution during isothermal, isostrain, and isobaric loading of polycrystalline shape memory NiTi.” Appl. Phys. Lett. 110 (25): 251903. https://doi.org/10.1063/1.4989523.
Owusu-Danquah, J. S., and A. F. Saleeb. 2017a. “On the cyclic stability of the thermomechanical behavior of NiTi shape memory cylindrical actuators.” Eur. J. Mech. A. Solids 64 (Aug): 143–159. https://doi.org/10.1016/j.euromechsol.2017.02.005.
Owusu-Danquah, J. S., and A. F. Saleeb. 2017b. “On the modeling of the effect of processing and heat treatment on actuation behaviors of high temperature ternary and quaternary shape memory alloys.” J. Alloys Compd. 714 (Aug): 493–501. https://doi.org/10.1016/j.jallcom.2017.04.212.
Padula, S., S. Qiu, D. Gaydosh, R. Noebe, G. Bigelow, A. Garg, and R. Vaidyanathan. 2012. “Effect of upper-cycle temperature on the load-biased, strain-temperature response of NiTi.” Metall. Mater. Trans. A 43 (12): 4610–4621. https://doi.org/10.1007/s11661-012-1267-5.
Padula, S. A., D. Gaydosh, A. Saleeb, and B. Dhakal. 2014. “Transients and evolution in NiTi.” Exp. Mech. 54 (5): 709–715. https://doi.org/10.1007/s11340-013-9840-4.
Phillips, F. R., R. W. Wheeler, A. B. Geltmacher, and D. C. Lagoudas. 2019. “Evolution of internal damage during actuation fatigue in shape memory alloys.” Int. J. Fatigue 124 (Jul): 315–327. https://doi.org/10.1016/j.ijfatigue.2018.12.019.
Sadjadpour, A., and K. Bhattacharya. 2007a. “A micromechanics-inspired constitutive model for shape-memory alloys.” Smart Mater. Struct. 16 (5): 1751. https://doi.org/10.1088/0964-1726/16/5/030.
Sadjadpour, A., and K. Bhattacharya. 2007b. “A micromechanics inspired constitutive model for shape-memory alloys: The one-dimensional case.” Smart Mater. Struct. 16 (1): S51. https://doi.org/10.1088/0964-1726/16/1/S06.
Saleeb, A. F., S. M. Arnold, M. G. Castelli, T. E. Wilt, and W. Graf. 2001. “A general hereditary multimechanism-based deformation model with application to the viscoelastoplastic response of titanium alloys.” Int. J. Plast. 17 (10): 1305–1350. https://doi.org/10.1016/S0749-6419(00)00086-3.
Saleeb, A. F., B. Dhakal, S. Dilibal, J. S. Owusu-Danquah, and S. A. Padula II. 2015a. “On the modeling of the thermo-mechanical responses of four different classes of NiTi-based shape memory materials using a general multi-mechanism framework.” Mech. Mater. 80 (Jan): 67–86. https://doi.org/10.1016/j.mechmat.2014.09.001.
Saleeb, A. F., B. Dhakal, and J. S. Owusu-Danquah. 2015b. “Assessing the performance characteristics and clinical forces in simulated shape memory bone staple surgical procedure: The significance of SMA material model.” Comput. Biol. Med. 62 (Jul): 185–195. https://doi.org/10.1016/j.compbiomed.2015.04.010.
Saleeb, A. F., B. Dhakal, and J. S. Owusu-Danquah. 2015c. “On the role of SMA modeling in simulating NiTinol self-expanding stenting surgeries to assess the performance characteristics of mechanical and thermal activation schemes.” J. Mech. Behav. Biomed. Mater. 49 (Sep): 43–60. https://doi.org/10.1016/j.jmbbm.2015.04.012.
Saleeb, A. F., B. Dhakal, S. A. Padula II, and D. J. Gaydosh. 2013. “Calibration of SMA material model for the prediction of the ‘evolutionary’ load-bias behavior under conditions of extended thermal cycling.” Smart Mater. Struct. 22 (9): 094017. https://doi.org/10.1088/0964-1726/22/9/094017.
Saleeb, A. F., S. H. Natsheh, and J. S. Owusu-Danquah. 2017a. “Efficiency of finite element analyses of 55NiTi SMA actuators: Solid versus beam and shell modeling.” Finite Elem. Anal. Des. 136 (Nov): 58–69. https://doi.org/10.1016/j.finel.2017.07.011.
Saleeb, A. F., S. H. Natsheh, and J. S. Owusu-Danquah. 2017b. “Multi-mechanism model for large-strain thermomechanical behavior of polyurethane shape memory polymer.” Polymer 130 (Nov): 230–241. https://doi.org/10.1016/j.polymer.2017.10.003.
Saleeb, A. F., S. H. Natsheh, J. S. Owusu-Danquah, and B. Dhakal. 2017c. “Modeling and characterization of cyclic shape memory behaviors of the binary Ni49.9Ti50.1 material system.” J. Mater. Eng. Perform. 26 (6): 2729–2741. https://doi.org/10.1007/s11665-017-2721-8.
Saleeb, A. F., and J. S. Owusu-Danquah. 2017. “The role of residual stress states in modeling the cyclic two-way shape memory behavior of high-temperature NiTiPd alloys and actuation components.” Mech. Mater. 110 (Jul): 29–43. https://doi.org/10.1016/j.mechmat.2017.04.005.
Saleeb, A. F., S. A. Padula II, and A. Kumar. 2011. “A multi-axial, multimechanism based constitutive model for the comprehensive representation of the evolutionary response of SMAs under general thermomechanical loading conditions.” Int. J. Plast. 27 (5): 655–687. https://doi.org/10.1016/j.ijplas.2010.08.012.
Sun, Q. P., R. Matsui, K. Takeda, and E. A. Pieczyska. 2017. Advances in shape memory materials. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-53306-3.
Wheeler, R., J. Santa-Cruz, D. Hartl, and D. Lagoudas. 2013. “Effect of processing and loading on equiatomic NiTi fatigue life and localized failure mechanisms.” In Proc., ASME 2013 Conf. on Smart Materials, Adaptive Structures and Intelligent Systems. New York: ASME.
Zanotti, C., P. Giuliani, S. Arnaboldi, and A. Tuissi. 2011. “Analysis of wire position and operating conditions on functioning of NiTi wires for shape memory actuators.” J. Mater. Eng. Perform. 20 (4–5): 688–696. https://doi.org/10.1007/s11665-011-9886-3.

Information & Authors

Information

Published In

Go to Journal of Aerospace Engineering
Journal of Aerospace Engineering
Volume 34Issue 1January 2021

History

Received: May 4, 2020
Accepted: Jul 27, 2020
Published online: Oct 19, 2020
Published in print: Jan 1, 2021
Discussion open until: Mar 19, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Distinguished Professor, Dept. of Civil Engineering, Univ. of Akron, Akron, OH 44325-3905 (corresponding author). ORCID: https://orcid.org/0000-0003-1088-7912. Email: [email protected]
M. A. Soudah [email protected]
Graduate Assistant, Dept. of Civil Engineering, Univ. of Akron, Akron, OH 44325-3905. Email: [email protected]
J. S. Owusu-Danquah, A.M.ASCE [email protected]
Assistant Professor, Dept. of Civil Engineering, Cleveland State Univ., Cleveland, OH 44115-2214. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share