Technical Papers
Jul 25, 2020

Deployment Dynamics for a Flexible Solar Array Composed of Composite-Laminated Plates

Publication: Journal of Aerospace Engineering
Volume 33, Issue 6

Abstract

Modern spacecraft often deploy large-scale and lightweight solar arrays consisting of composite-laminated plates because of their high reliability, superior mechanical properties, and low manufacturing cost. This paper presents the deployment dynamics of a flexible solar array composed of composite-laminated plates undergoing large rotation and large deformation motions. The subject is a constrained rigid–flexible coupling spacecraft consisting of a rigid main body and a flexible solar array composed of composite-laminated plates. The rigid main body and the flexible solar array are described by the natural coordinate formulation and the absolute nodal coordinate formulation, respectively. A constitutive model of a laminated shell formed of fiber-reinforced composite material is established, and the corresponding generalized elastic force is derived. Thus, the spacecraft’s equations of motion are derived as a set of differential algebraic equations and a computational scheme based on the Hilber-Hughes-Taylor (HHT)-I3 method is illustrated. A series of numerical calculations and simulations are conducted to investigate the solar array deployment dynamics. The results show that the solar panel flexibility and fiber orientation of fiber-reinforced composite materials have obvious effects on spacecraft dynamic responses during solar array deployment.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data and models generated or used during the study appear in this article.

References

Adhikari, B., and B. N. Singh. 2018. “An efficient higher order non-polynomial Quasi 3-D theory for dynamic responses of laminated composite plates.” Compos. Struct. 189 (Apr): 386–397. https://doi.org/10.1016/j.compstruct.2017.10.044.
Akbarzadeh, A. H., M. Arian Nik, and D. Pasini. 2016. “Vibration responses and suppression of variable stiffness laminates with optimally steered fibers and magnetostrictive layers.” Composites, Part B 91 (Apr): 315–326. https://doi.org/10.1016/j.compositesb.2016.02.003.
Ambrósio, J. A. C., M. A. Neto, and R. P. Leal. 2007. “Optimization of a complex flexible multibody systems with composite materials.” Multibody Sys. Dyn. 18 (2): 117–144. https://doi.org/10.1007/s11044-007-9086-y.
Andelfinger, U., and E. Ramm. 1993. “EAS-Elements for two-dimensional, three-dimensional, plate and shells and their equivalence to HR-elements.” Int. J. Numer. Methods Eng. 36 (8): 1311–1337. https://doi.org/10.1002/nme.1620360805.
Babaevskii, P. G., N. A. Kozlov, I. G. Agapov, G. M. Reznichenko, N. V. Churilo, and I. V. Churilo. 2016. “Manifestation of the shape-memory effect in polyetherurethane cellular plastics, fabric composites, and sandwich structures under microgravity.” Cosmic Res. 54 (5): 399–404. https://doi.org/10.1134/S001095251604002X.
Bai, Z., and Y. Zhao. 2012. “Attitude motion of spacecraft during oblique solar panel deployment.” Aircr. Eng. Aerosp. Technol. 84 (2): 109–114. https://doi.org/10.1108/00022661211207929.
Bergman, D., B. Yang, and H. Fang. 2013. “Curvilinear quasi-static model for analysis of shape memory polymer composite cantilever beams for space applications.” In Proc., 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf. Reston, VA: American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2013-1868.
Birhanu, F., Z.-B. Chen, and W. Ma. 2010. “Modeling and simulation of satellite solar panel deployment and locking.” Inf. Technol. J. 9 (3): 600–604. https://doi.org/10.3923/itj.2010.600.604.
Dao, T., N. Goo, and W. Yu. 2018. “Blocking force measurement of shape memory polymer composite hinges for space deployable structures.” J. Intell. Mater. Syst. Struct. 29 (18): 3667–3678. https://doi.org/10.1177/1045389X18798950.
Dawood, M., M. W. El-Tahan, and B. Zheng. 2015. “Bond behavior of superelastic shape memory alloys to carbon fiber reinforced polymer composites.” Composites, Part B 77 (Aug): 238–247. https://doi.org/10.1016/j.compositesb.2015.03.043.
De Jalón, J. G. 2007. “Twenty-five years of natural coordinates.” Multibody Sys. Dyn. 18 (1): 15–33. https://doi.org/10.1007/s11044-007-9068-0.
Dvorkin, E., and K.-J. Bathe. 1984. “A continuum mechanics based four-node shell element for general nonlinear analysis.” Eng. Comput. 1: 77–88. https://doi.org/10.1108/eb023562.
Edwin Sudhagar, P., A. Ananda Babu, R. Vasudevan, and P. Jeyaraj. 2015. “Vibration analysis of a tapered laminated thick composite plate with ply drop-offs.” Arch. Appl. Mech. 85 (7): 969–990. https://doi.org/10.1007/s00419-015-1004-9.
Emam, S. A., and D. J. Inman. 2015. “A review on bistable composite laminates for morphing and energy harvesting.” Appl. Mech. Rev. 67 (6): 15. https://doi.org/10.1115/1.4032037.
Frangopol, D. M., and S. Recek. 2003. “Reliability of fiber-reinforced composite laminate plates.” Probab. Eng. Mech. 18 (2): 119–137. https://doi.org/10.1016/S0266-8920(02)00054-1.
Gao, E., X. Zhang, and Z. Yao. 2008. “Simulation and analysis of flexible solar panels’ deployment and locking processes.” J. Shanghai Jiaotong Univ. (Sci.) 13 (3): 275–279. https://doi.org/10.1007/s12204-008-0275-5.
García-Vallejo, D., J. L. Escalona, J. Mayo, and J. Domínguez. 2003. “Describing rigid-flexible multibody systems using absolute coordinates.” Nonlinear Dyn. 34 (1): 75–94. https://doi.org/10.1023/B:NODY.0000014553.98731.8d.
García-Vallejo, D., J. Mayo, J. L. Escalona, and J. Domínguez. 2008. “Three-dimensional formulation of rigid-flexible multibody systems with flexible beam elements.” Multibody Sys. Dyn. 20 (1): 1–28. https://doi.org/10.1007/s11044-008-9103-9.
Geradin, M., and D. Rixen. 1997. Mechanical vibration: Theory and application to structural dynamics. Hoboken, NJ: Wiley.
Gerstmayr, J., H. Sugiyama, and A. Mikkola. 2013. “Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems.” J. Comput. Nonlinear Dyn. 8 (3): 31012–31016. https://doi.org/10.1115/1.4023487.
Gloria, A., D. Ronca, T. Russo, U. D’Amora, M. Chierchia, R. de Santis, L. Nicolais, and L. Ambrosio. 2011. “Technical features and criteria in designing fiber-reinforced composite materials: From the aerospace and aeronautical field to biomedical applications.” J. Appl. Biomater. Func. Mater. 9 (2): 151–163. https://doi.org/10.5301/JABB.2011.8569.
Guo, S.-J., H.-Q. Li, and G.-P. Cai. 2019. “Deployment dynamics of a large-scale flexible solar array system on the ground.” J. Astronaut. Sci. 66 (3): 225–246. https://doi.org/10.1007/s40295-018-0138-8.
Hussein, B., D. Negrut, and A. A. Shabana. 2008. “Implicit and explicit integration in the solution of the absolute nodal coordinate differential/algebraic equations.” Nonlinear Dyn. 54 (4): 283–296. https://doi.org/10.1007/s11071-007-9328-9.
Jeong, G., J. H. Lim, C. Choi, and S.-W. Kim. 2019. “A virtual experimental approach to evaluate transverse damage behavior of a unidirectional composite considering noncircular fiber cross-sections.” Compos. Struct. 228 (Nov): 111369. https://doi.org/10.1016/j.compstruct.2019.111369.
Kim, Y., M. Kim, P. Kim, H. Kim, J. Park, J. H. Roh, and J. Bae. 2016. “Optimal design of a high-agility satellite with composite solar panels.” Int. J. Aeronaut. Space Sci. 17 (4): 476–490. https://doi.org/10.5139/IJASS.2016.17.4.476.
Kim, Y., P. Kim, H. Kim, and J. Park. 2018. “Optimal design of a composite lattice rectangular plate for solar panels of a high-agility satellite.” Int. J. Aeronaut. Space Sci. 19 (3): 762–775. https://doi.org/10.1007/s42405-018-0050-2.
Kote, A., K. Balaji, B. S. Nataraju, and V. C. Aralimatti. 2007. “Effect of solar array deployment on spacecraft attitude.” J. Spacecraft Technol. 17 (2): 1–8.
Kwak, M. K., S. Heo, and H. B. Kim. 2008. “Dynamics of satellite with deployable rigid solar arrays.” Multibody Sys. Dyn. 20 (3): 271–286. https://doi.org/10.1007/s11044-008-9119-1.
Lan, X., Y. Liu, H. Lv, X. Wang, J. Leng, and S. Du. 2009. “Fiber reinforced shape-memory polymer composite and its application in a deployable hinge.” Smart Mater. Struct. 18 (2): 024002. https://doi.org/10.1088/0964-1726/18/2/024002.
Leng, J., H. Lu, and S. Du. 2008. “Conductive shape memory polymer composite technology and its applications in aerospace.” In Proc., 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf., 16th AIAA/ASME/AHS Adaptive Structures Conf., 10th AIAA Non-Deterministic Approaches Conf., 9th AIAA Gossamer Spacecraft Forum, 4th AIAA Multidisciplinary Design Optimization Specialists Conf. Reston, VA: American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2008-2203.
Li, H., P. Xue, Z. Guan, Q. Han, and B. Wen. 2018. “A new nonlinear vibration model of fiber-reinforced composite thin plate with amplitude-dependent property.” Nonlinear Dyn. 94 (3): 2219–2241. https://doi.org/10.1007/s11071-018-4486-5.
Li, H.-Q., L.-C. Duan, X.-F. Liu, and G.-P. Cai. 2017a. “Deployment and control of flexible solar array system considering joint friction.” Multibody Sys. Dyn. 39 (3): 249–265. https://doi.org/10.1007/s11044-016-9534-7.
Li, Y., C. Wang, and W. Huang. 2019a. “Dynamics analysis of planar rigid-flexible coupling deployable solar array system with multiple revolute clearance joints.” Mech. Syst. Sig. Process. 117 (Feb): 188–209. https://doi.org/10.1016/j.ymssp.2018.07.037.
Li, Y., C. Wang, and W. Huang. 2019b. “Rigid-flexible-thermal analysis of planar composite solar array with clearance joint considering torsional spring, latch mechanism and attitude controller.” Nonlinear Dyn. 96 (3): 2031–2053. https://doi.org/10.1007/s11071-019-04903-z.
Li, Y., Z. Wang, C. Wang, and W. Huang. 2017b. “Effects of torque spring, CCL and latch mechanism on dynamic response of planar solar arrays with multiple clearance joints.” Acta Astronaut. 132 (Mar): 243–255. https://doi.org/10.1016/j.actaastro.2016.12.032.
Liu, C., Q. Tian, and H. Hu. 2011. “Dynamics of a large scale rigid–flexible multibody system composed of composite laminated plates.” Multibody Sys. Dyn. 26 (3): 283–305. https://doi.org/10.1007/s11044-011-9256-9.
Nachbagauer, K. 2014. “State of the art of ANCF elements regarding geometric description, interpolation strategies, definition of elastic forces, validation and the locking phenomenon in comparison with proposed beam finite elements.” Arch. Comput. Methods Eng. 21 (3): 293–319. https://doi.org/10.1007/s11831-014-9117-9.
Nada, A. A., and A. M. El-Assal. 2012. “Absolute nodal coordinate formulation of large-deformation piezoelectric laminated plates.” Nonlinear Dyn. 67 (4): 2441–2454. https://doi.org/10.1007/s11071-011-0158-4.
Negrut, D., R. Rampalli, G. Ottarsson, and A. Sajdak. 2006. “On an implementation of the Hilber-Hughes-Taylor method in the context of index 3 differential-algebraic equations of multibody dynamics (DETC2005-85096).” J. Comput. Nonlinear Dyn. 2 (1): 73–85. https://doi.org/10.1115/1.2389231.
Neto, M. A., J. A. C. Ambrósio, and R. P. Leal. 2004. “Flexible multibody systems models using composite materials components.” Multibody Sys. Dyn. 12 (4): 385–405. https://doi.org/10.1007/s11044-004-0911-2.
Neto, M. A., J. A. C. Ambrósio, and R. P. Leal. 2006. “Composite materials in flexible multibody systems.” Comput. Methods Appl. Mech. Eng. 195 (50–51): 6860–6873. https://doi.org/10.1016/j.cma.2005.08.009.
Nowakowski, C., J. Fehr, M. Fischer, and P. Eberhard. 2012. “Model order reduction in elastic multibody systems using the floating frame of reference formulation.” IFAC Proc. Volumes 45 (2): 40–48. https://doi.org/10.3182/20120215-3-AT-3016.00007.
Omar, M. A., and A. A. Shabana. 2001. “A two-dimensional shear deformable beam for large rotation and deformation problems.” J. Sound Vib. 243 (3): 565–576. https://doi.org/10.1006/jsvi.2000.3416.
Pratik, T., S. K. Barman, D. K. Maiti, and D. Maity. 2019. “Free vibration analysis of delaminated composite plate using 3D degenerated element.” J. Aerosp. Eng. 32 (5): 4019070. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001053.
Rouzegar, J., and A. Abbasi. 2018. “A refined finite element method for bending analysis of laminated plates integrated with piezoelectric fiber-reinforced composite actuators.” Acta Mech. Sin. 34 (4): 689–705. https://doi.org/10.1007/s10409-017-0745-9.
Rouzegar, J., R. Koohpeima, and F. Abad. 2019. “Dynamic analysis of laminated composite plate integrated with a piezoelectric actuator using four-variable refined plate theory.” Iran. J. Sci. Technol. Trans. Mech. Eng. 44 (3): 557–570. https://doi.org/10.1007/s40997-019-00284-1.
Sarangi, S. K., and B. Basa. 2014. “Nonlinear finite element analysis of smart laminated composite sandwich plates.” Int. J. Struct. Stab. Dyn. 14 (3): 1350075. https://doi.org/10.1142/S0219455413500752.
Shabana, A. A. 1997a. “Definition of the slopes and the finite element absolute nodal coordinate formulation.” Multibody Sys. Dyn. 1 (3): 339–348. https://doi.org/10.1023/A:1009740800463.
Shabana, A. A. 1997b. “Flexible multibody dynamics: Review of past and recent developments.” Multibody Sys. Dyn. 1 (2): 189–222. https://doi.org/10.1023/A:1009773505418.
Shabana, A. A. 2013. Dynamics of multibody systems. New York: Cambridge University Press.
Singha, M. K., and R. Daripa. 2009. “Nonlinear vibration and dynamic stability analysis of composite plates.” J. Sound Vib. 328 (4–5): 541–554. https://doi.org/10.1016/j.jsv.2009.08.020.
Sugiyama, H., and H. Yamashita. 2011. “Spatial joint constraints for the absolute nodal coordinate formulation using the non-generalized intermediate coordinates.” Multibody Sys. Dyn. 26 (1): 15–36. https://doi.org/10.1007/s11044-010-9236-5.
Tabiei, A., W. Yi, and R. Goldberg. 2005. “Non-linear strain rate dependent micro-mechanical composite material model for finite element impact and crashworthiness simulation.” Int. J. Non Linear Mech. 40 (7): 957–970. https://doi.org/10.1016/j.ijnonlinmec.2004.10.004.
Taraghi, P., H. Showkati, and T. Zirakian. 2020. “Buckling stability performance assessment of CFRP-strengthened conical shells under uniform external pressure.” Thin Walled Struct. 148 (Mar): 106618. https://doi.org/10.1016/j.tws.2020.106618.
Tian, Q., Y. Zhang, L. Chen, and P. Flores. 2009. “Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints.” Comput. Struct. 87 (13–14): 913–929. https://doi.org/10.1016/j.compstruc.2009.03.006.
Upadhyay, A. K., R. Pandey, and K. K. Shukla. 2011. “Nonlinear dynamic response of laminated composite plates subjected to pulse loading.” Commun. Nonlinear Sci. Numer. Simul. 16 (11): 4530–4544. https://doi.org/10.1016/j.cnsns.2011.03.024.
Vu-Quoc, L., and X. G. Tan. 2003. “Optimal solid shells for non-linear analyses of multilayer composites. I: Statics.” Comput. Methods Appl. Mech. Eng. 192 (9): 975–1016. https://doi.org/10.1016/S0045-7825(02)00435-8.
Wei, J., D. Cao, L. Wang, H. Huang, and W. Huang. 2017. “Dynamic modeling and simulation for flexible spacecraft with flexible jointed solar panels.” Int. J. Mech. Sci. 130 (Sep): 558–570. https://doi.org/10.1016/j.ijmecsci.2017.06.037.
Wie, B., N. Furumoto, A. K. Banerjee, and P. M. Barba. 1986. “Modeling and simulation of spacecraft solar array deployment.” J. Guidance Control Dyn. 9 (5): 593–598. https://doi.org/10.2514/3.20151.
Xin, X., L. Liu, Y. Liu, and L. Jinsong. 2019. “Mechanical models, structures, and applications of shape-memory polymers and their composites.” Acta Mech. Solida Sin. 32 (5): 535–565. https://doi.org/10.1007/s10338-019-00103-9.
Yamashita, H., P. Jayakumar, and H. Sugiyama. 2015a. “Development of shear deformable laminated shell element and its application to ANCF tire model.” In Proc., Int. Design Engineering Technical Conf. and Computers and Information in Engineering Conf. Reston, VA: ASCE.
Yamashita, H., A. I. Valkeapää, P. Jayakumar, and H. Sugiyama. 2015b. “Continuum mechanics based bilinear shear deformable shell element using absolute nodal coordinate formulation.” J. Comput. Nonlinear Dyn. 10 (5): 051012. https://doi.org/10.1115/1.4028657.
Yang, B., G. Davis, and H. Fang. 2010. “Mathematical formulation for deployment dynamics of shape memory polymer composite space structures.” In Proc., 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf. 18th AIAA/ASME/12th AHS Adaptive Structures Conf. Reston, VA: American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2010-2582.
Yin, C., Z. Hao, J. Gu, Z. Xie, and H. Sun. 2019. “Modeling the thermomechanical behaviors of particle reinforced shape memory polymer composites.” Appl. Phys. A 125: 382. https://doi.org/10.1007/s00339-019-2672-z.
Zhang, D., L. Liu, J. Leng, and Y. Liu. 2020. “Ultra-light release device integrated with screen-printed heaters for CubeSat’s deployable solar arrays.” Compos. Struct. 232 (Jan): 111561. https://doi.org/10.1016/j.compstruct.2019.111561.
Zhang, L. X., Z. F. Bai, Y. Zhao, and X. B. Cao. 2012. “Dynamic response of solar panel deployment on spacecraft system considering joint clearance.” Acta Astronaut. 81 (1): 174–185. https://doi.org/10.1016/j.actaastro.2012.07.020.
Zhang, Y., Q. Tian, L. Chen, and J. Yang. 2009. “Simulation of a viscoelastic flexible multibody system using absolute nodal coordinate and fractional derivative methods.” Multibody Sys. Dyn. 21 (3): 281–303. https://doi.org/10.1007/s11044-008-9139-x.

Information & Authors

Information

Published In

Go to Journal of Aerospace Engineering
Journal of Aerospace Engineering
Volume 33Issue 6November 2020

History

Received: Dec 9, 2019
Accepted: May 29, 2020
Published online: Jul 25, 2020
Published in print: Nov 1, 2020
Discussion open until: Dec 25, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate, College of Aerospace and Civil Engineering, Harbin Engineering Univ., Harbin 150001, PR China. Email: [email protected]
Professor, College of Aerospace and Civil Engineering, Harbin Engineering Univ., Harbin 150001, PR China (corresponding author). ORCID: https://orcid.org/0000-0002-3948-1935. Email: [email protected]
Shijie Zhang [email protected]
Professor, School of Astronautics, Harbin Institute of Technology, Harbin 150001, PR China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share