TECHNICAL PAPERS
Oct 1, 2008

Phytoremediation: An Ecotechnology for Treating Contaminated Sites

Publication: Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management
Volume 12, Issue 4

Abstract

Phytoremediation is an ecotechnological remediation for treating contaminated sites. This phytotechnology uses plants to degrade, transform, assimilate, metabolize, or detoxify hazardous pollutants from soil and aquatic and atmospheric environments. Phytoremediation is generally used as a final polishing step following the pretreatment of the high concentrations of contaminants, while it can be used alone for low-level contamination, which may be the most economical and effective remediation strategy. Phytoremediation can be used for treating many classes of contaminants including petroleum hydrocarbons, chlorinated organic compounds, pesticides, explosives, heavy metals and radionuclides, and salts existing in industrial wastes, oil spills, forestry and agricultural wastes, salty waste liquid, and landfill leachate, which may contaminate surface water, groundwater, sediments, and soils. Although phytoremediation is a complicated process to remove contaminants from different environments and still need to keep investigating its mechanisms, it is an efficient, economical, and environmentally friendly ecotechnology. As a result of these advantages, phytoremediation has considerable potential for environmental restoration of contaminated sites.

Get full access to this article

View all available purchase options and get full access to this article.

References

Alkorta, I., and Garbisu, C. (2001). “Phytoremediation of organic contaminants in soils.” Bioresour. Technol., 79, 273–276.
Anderson, T. A., Guthrie, E. A., and Walton, B. T. (1993). “Bioremediation.” Environ. Sci. Technol., 27, 2630–2636.
Anderson, T. A., Kruger, E. L., and Coats, J. R. (1994). “Enhanced degradation of a mixture of three herbicides in the rhizosphere of a herbicide-tolerant plant.” Chemosphere, 28, 1551–1557.
Anderson, T. A., and Walton, B. T. (1995). “Comparative fate of 14C-trichloroethylene in the root zone of plants from a former solvent disposal site.” Envir. Toxicol. Chem., 14, 2041–2047.
Baker, A. J. M., McGrath, S. P., Reeves, R. D., and Smith, J. A. C. (2000). “Metal hypeaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils.” Phytoremediaiton of contaminated soil and water, N. Terry and G. Banuelos, eds., Lewis Publishers, New York, 85–101.
Banks, M. K., Govindaraju, R. S., Schwab, A. P., and Kulakow, P. (2000). “Demonstration introduction and technology overview.” Phytoremediation of hydrocarbon-contaminated soil, S. Fiorenza, C. L. Oubre, and C. H. Ward, eds., CRC Press, Boca Raton, Fla., 7–9.
Banks, M. K., Schwab, A. P., Eulis, K., Shalabi, J., and Ho, C. H. (2004). “Indiana Harbor project: Field and greenhouse assessment of phytoremediation.” Final Rep., U.S. Environmental Protection Agency, Cincinnati.
Banuelos, G., Ajwa, H. A., and Zambrzuski, S. (1998). “Is phytoremediation up to the selenium challenge?” Soil Groundw. Cleanup, 6–10.
Barr, D. P., and Aust, S. D. (1994). “Mechanisms white rot fungi use to degrade pollutants.” Environ. Sci. Technol., 28, 79–87.
Bell, R. M. (1992). “Higher plant accumulation of organic pollutants from soils.” Technical Rep., EPA/600/SR-92/138, U.S. Environmental Protection Agency, Cincinnati, 1–4.
Best, E. P. H., Zappi, M. E., Fredrickson, H. L., Sprecher, S. L., Larson, S. L., and Ochman, M. (1997). “Screening of aquatic and wetland plant species for phytoremediation of explosives-contaminated groundwater for the Iowa Army Ammuntion Plant.” Ann. N.Y. Acad. Sci., 829, 179–194.
Brooks, R. R., and Robinson, B. H. (1998). “The potential use of hyperaccumulators and other plants for phytomining.” Plants that hyperaccumulate heavy metals, R. R. Brooks, ed., CAB Int., Oxon, U.K., 327–356.
Burken, J. G., and Schnoor, J. L. (1996). “Phytoremediation: Plant uptake of atrzine and role of root exudates.” J. Environ. Eng., 122(11), 958–963.
Cabello, M. N. (2001). “Mycorrhizas and hydrocarbons.” Fungi in bioremediation, G. M. Gadd, ed., Cambridge University Press, Cambridge, U.K., 456–471.
Cairney, J. W. G., and Meharg, A. A. (1999). “Influences of anthropogenic pollution on mycorrhizal fungal communities.” Environ. Pollut., 106, 169–182.
Cataldo, D. A., Bean, R. M., and Fellows, R. J. (1987). “Uptake and fate of phenol, aniline and quinoline in terrestrial plants.” Proc., Hanford Life Sci. Symp. Health Environ. Res. Complex Organic Mixtres, R. H. Gray, E. K. Chess, P. J. Mellinger, R. G. Riley, and D. L. Springer, eds., Pacific Northwest Lab., Richland, Wash., 631–640.
Cunningham, S. D., Berti, W. R., and Huang, J. W. (1995). “Phytoremediation of contaminated soils.” Trends Biotechnol., 13, 393–397.
Curl, E. A., and Truelove, B. (1986). The rhizosphere, Springer, Berlin.
Dec, J., and Bollag, J. M. (1994). “Use of plant material for the decontamination of water polluted with phenols.” Biotechnol. Bioeng., 44, 1132–1139.
Dehn, B., and Schuepp, H. (1989). “Influence of VA mycorrhizae on the uptake and distribution of heavy metals in plants.” Agric., Ecosyst. Environ., 29, 79–83.
Dellhaize, E., Randall, P. J., Wallace, P. A., and Pinkerton, A. (1994). “Screening Arabidopsis for mutants in mineral nutrition.” Plant Soil, 156, 131–134.
Deram, A., and Petit, D. (1997). “Ecology of bioaccumulation in Arrhenatherum elatius. L., (Poaceae) populations—Applications of phytoremediation of zinc, lead and cadmium contaminated soils.” J. Exp. Bot., 48, 98–106.
Donnelly, P. K., and Entry, J. A. (1999). “Bioremediation of soils with mycorrhizal fungi.” Bioremediation of contaminated soils, Agronomy Monograph No. 37, Madison, Wis., 417–435.
Donnelly, P. K., and Fletcher, J. S. (1994). “Potential use of mycorrhizal fungi as bioremediation agents.” Bioremediaiton through rhizosphere technology, T. A. Anderson and J. R. Coats, eds., American Chemical Society, Washington, D.C., 93–99.
Dowty, R. A., Shaffer, G. P., Hester, M. W., Childers, G. W., Campo, F. M., and Greene, M. C. (2001). “Phytoremediation of small-scale oil spills in fresh marsh environments: A mesocosm simulation.” Mar. Environ. Res., 52, 195–211.
Dushenkov, V., Nanda Kumar, P. B. A., Motto, H., and Raskin, I. (1995). “Rhizofiltration: The use of plants to remove heavy metals from aqueous streams.” Environ. Sci. Technol., 29, 1230–1245.
Fellows, R. J., Harvey, S. D., Ainsworth, C. C., and Cataldo, D. A. (1996). “Biotic and abiotic transformation of munitions materials (TNT, RDX) by plants and soils. Potentials for attenuation and remediation of contaminants.” Proc., IBC Int. Conf. Phytoremed., 332–342.
Ferro, A. M., Sims, R. C., and Bugbee, B. (1994). “Hycrest crested wheatgrass accelerates the degradation of pentachlorophenol in soil.” J. Environ. Qual., 23, 272–279.
Field, A. M., and Thurman, E. M. (1996). “Glutathione conjugation and contaminant transformation.” Environ. Sci. Technol., 30, 1413–1418.
Fletcher, J. S., and Hedge, R. S. (1995). “Release of phenols by perennial plant roots and their potential importance in bioremediation.” Chemosphere, 31, 3000–3016.
Garrett, S. D. (1981). Soil fungi and soil fertility, 2nd Ed., Pergamon Press, Oxford, U.K.
Gatliff, E. G. (1994). “Vegetative remediation process offers advantages over traditional pump-and-treat technologies.” Remediation, 4, 343–352.
Goel, A., Kumar, G., Payne, G. F., and Dube, S. K. (1997). “Plant cell biodegradation of a xenobiotic nitrate ester, nitroglycerin.” Nat. Biotechnol., 15, 174–177.
Grusak, M. A. (1994). “Iron transport to developing ovules of Pisum sativum. I. Seed import characteristics and phloem iron-loading capacity of source regions.” Plant Physiol., 104, 649–655.
Hannink, N. K., et al. (2007). “Enhanced transformation of TNT by tobacco plants expressing a bacterial nitroreductase.” Int. J. Phytoremed., 9(5), 385–402.
Harley, J. I. (1989). “The significance of mycorrhiza.” Mycol. Res., 92, 129–139.
Hartley, J., Cairney, J. W. G., and Meharg, A. A. (1997). “Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the rhizosphere?” Plant Soil, 189, 303–319.
Heggo, A., Angle, J. S., and Chancy, R. I. (1990). “Effects of vesicular-arbuscular mycorrhizal fungi on heavy metals uptake by soybeans.” Soil Biol. Biochem., 22, 865–869.
Heinonsalo, J., Jorgensen, K. S., Haahtela, K., and Sen, R. (2000). “Effect of Pinus sylvestris root growth and mycorrhizosphere development on bacterial carbon source utilization and hydrocarbon oxidation in forest and petroleum-contaminated soils.” Can. J. Microbiol., 46, 451–464.
Huang, C. C., Chen, M. W., Hsieh, J. L., Lin, W. H., Chen, P. C., and Chien, L. F. (2006). “Expression of mercuric reductase from Bacillus megaterium MB1 in eukaryotic microalga Chlorella sp. DT: An approach for mercury phytoremediation.” Appl. Microbiol. Biotechnol., 72, 197–205.
Johnston, A. (2002). “Phytoremediation: Using plants to combat a stressed environment.” ⟨http://www.bio.davidson.edu/people/kabernd/seminar/2002/stress/Phytoremediation.htm⟩ (Feb. 18, 2008).
Jones, K. C. (1991). Organic contaminants in the environment, Elsevier, New York.
Juniper, S., and Abbott, L. (1993). “Vesicular-arbuscular mycorrhias and soil salinity.” Mycorrhiza, 4, 45–57.
Knabel, D. B., and Vestal, J. R. (1992). “Effects of intact rhizosphere microbial communities on the mineralization of surfactants in surface soils.” Can. J. Microbiol., 38, 643–653.
Kothari, S. K., Marschner, H., and Geroge, E. (1990). “Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize.” New Phytol., 116, 303–311.
Leake, J. R. (1987). “Metabolism of phyto- and fungitoxic phenolic acids by the ericoid mycorrhizal fungus.” Mycorrhizae in the next decade: Practical applications and research priorities, D. M. Sylvia, ed., Inst. of Food and Agric. Sci., Univ. of Florida, Gainesville, Fla., 332–334.
Li, H., Sheng, G., Chiou, C. T., and Xu, O. (2005). “Relation of organic contaminant equilibrium sorption and kinetic uptake in plants.” Environ. Sci. Technol., 39, 4864–4870.
Linderman, R. G. (1988). “Mycorrhizal interactions with the rhizosphere microflora: The mycorrhizosphere effect.” Phytopathology, 78, 366–371.
Low, J. E., Rutter, A., and Zeeb, B. A. (2007). “In situ accumulation of polychlorinated biphenyls (PCBs) in target plant species during exposure to contaminated soil.” Proc., Abstract Proc., 4th Int. Phytotechnologies Conf., 122–123.
MacFarlane, J. C., Pfleege, T., and Fletcher, J. (1990). “Effect, uptake and distribution of nitrobenzene in several terrestrial plants.” Envir. Toxicol. Chem., 9, 513–520.
Meagher, R. B., Rugh, C., Wilde, D., Wallace, M., Merkle, S., and Summers, A. O. (1995). “Phytoremediation of toxic heavy metal ion contamination: Expression of a modified bacterial mercuric ion reductase in transgenic Arabidopsis confers reduction of and resistance to high levels of ionic mercury.” Proc., Abstr. 14th Annual Symp. Curr. Top. Plant Biochem. Physiol. Nol. Boil., 29–30.
Meharg, A. A. (2001). “The potential for utilizing mycorrhizal associations in soils bioremediation.” Fungi in bioremediation, G. M. Gadd, ed., Cambridge University Press, Cambridge, U.K., 445–455.
Meharg, A. A., and Cairney, J. W. G. (2000). “Ectomycorrhizas—Extending the capabilities of rhizosphere remediation?” Soil Biol. Biochem., 32, 1457–1484.
Meharg, A. A., Cairney, J. W. G., and Maguire, N. (1997). “Mineralization of, 2,4-dichlorophenol by ectomycorrhizal fungi in axenic culture and in symbiosis with pine.” Chemosphere, 34, 2495–2504.
Mendelssohn, I. A., and Lin, Q. (2003). “Development of bioremediation for oil spill cleanup in coastal wetlands.” OCS Study No. MMS 2002-048, U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans.
Narita, M., Nishizawa, H., Ishii, H., Huang, C. C., and Endo, G. (2003). “Characterization of organomercury compounds removal by Hg-resistant Bacillus strains and mergene-cloned Escherichia coli.” J. Environ. Biotechnol., 3, 43–50.
Nellessen, J. E., and Fletcher, J. S. (1993). “Assessment of published literature on the uptake, accumulation, and translocation of heavy metals by vascular plants.” Chemosphere, 27, 669–680.
Nepovim, A., et al. (2005). “Degradation of 2,4,6-trinitrotoluene by selected helop.” Chemosphere, 60(10), 1454–1461.
Newman, L. A., Strand, S. E., Choe, N., Duffy, J., and Ekuan, G. (1997). “Uptake and biotransformation of trichloroethylene by hybrid poplars.” Environ. Sci. Technol., 31, 1062–1067.
Otto, S., Vianello, M., Infantino, A., Zanin, G., and Di Guardo, A. (2008). “Effect of a full-grown vegetative filter strip on herbicide runoff: Maintaining of filter capacity over time.” Chemosphere, 71(1), 74–82.
Paterson, S., Mackay, D., Tam, D., and Shiu, W. Y. (1990). “Uptake of organic chemicals by plants: A review processes, correlations and models.” Chemosphere, 21, 297–331.
Paul, E. A., and Clark, F. E. (1989). Soil microbiology and biochemistry, Academic Press, San Diego.
Pimgan, P., and Jindal, R. (2007). “Effect of high cadmium loading on performance of free water surfact constructed wetlands.” Pract. Period. Hazard. Toxic Radioact. Waste Manage., 11(3), 164–171.
Pirondini, A., Visioli, G., Deniau, A., Schat, H., Aarts, M., and Marmiroli, N. (2007). “Levels of genetic and protein polymorphisms may account for phenotypic plasticity in the hyperaccumulator species Thlaspi caerulescens.” Proc., Abstract Proc., 4th Int. Phytotechnologies Conf., 14–15.
Radwan, S. S., Dashti, N., El-Nemr, I., and Khanafer, M. (2007). “Hydrocarbon utilization by nodule bacteria and plant growth-promoting rhizobacteria.” Int. J. Phytoremed., 9(6), 475–486.
Rao, A. S. (1990). “Root flavonoids.” Botanical Rev., 56, 1–84.
Rauser, W. E. (1990). “Phytochelatins.” Annu. Rev. Biochem., 59, 61–86.
Reeves, R. D., and Brooks, R. R. (1983). “Hyperaccumulation of lead and zinc by two metallophytes from mining areas of Central Europe.” Environ. Pollut., 31, 277–285.
Richard, D. E., England, K. P., and Connell, D. (2001). “Wetland restoration remediates chlorinated solvents in groundwater and protects surface water.” Phytoremediation, wetlands, and sediments, A. Leeson, E. A. Foote, M. K. Banks, and V. S. Magar, eds., Battelle Press, Columbus, Ohio, 105–112.
Rivera, R., Medina, V. F., Larson, S. L., and McCutcheon, S. C. (1998). “Phytotreatment of TNT-contaminated ground water.” J. Soil Contaminat, 7(4), 511–529.
Roper, J. C., Dec., J., and Bollag, J. (1996). “Using minced horseradish roots for the treatment of polluted waters.” J. Environ. Qual., 25, 1242–1247.
Ryan, J. A., Bell, J. M., Davidson, J. M., and O’Connor, J. A. (1988). “Plant uptake of non-ionic chemicals from soils.” Chemosphere, 17, 2299–2323.
Rylott, E. L., Jackson, R. G., and Bruce, N. C. (2007). “Engineering transgenic plants to degrade RDX from military training ranges.” Proc., Abstract Proc. 4th Int. Phytotechnologies Conf., 15–16.
Salt, D. E., Smithe, R. D., and Raskin, I. (1998). “Phytoremediation.” Annu. Rev. Plant Physiol. Plant Mol. Biol., 49, 643–668.
Sarand, I., et al. (1998). “Microbial biofilms and catabolic plasmid harbouring degradative fluorescent pseudomonads in Scots pine mycorrhizospheres developed on petroleum contaminated soil.” FEMS Microbiol. Ecol., 27, 115–126.
Schnoor, J. L., Licht, L. A., McCtcheon, S. C., Wolfe, N. L., and Carreira, L. H. (1995). “Phytoremediation of organic and nutrient contaminants.” Environ. Sci. Technol., 29, 318–323.
Schroll, R., Bierling, B., Cao, G., Dorfler, U., and Lahaniati, M. (1994). “Uptake pathways of organic chemicals from soil by agricultural plants.” Chemosphere, 28, 297–303.
Schuepp, H., and Bodmer, M. (1991). “Complex response of VA-mycorrhizae to xenobiotic substances.” Toxicol. Environ. Chem., 30, 193–199.
Shimp, J. F., Tracy, J. C., Davis, L. C., Lee, E., and Huang, W. (1993). “Beneficial effects of plants in the remediation of soil and groundwater contaminated with organic materials.” Environ. Sci. Technol., 23, 41–77.
Smith, S. E., and Read, D. T. (1997). Mycorrhizal symbiosis, Academic Press, London ⟨http://www.its.caltech.edu/~sciwrite/journal03/stewart.html⟩ (Feb. 18, 2008).
Susarla, S., Medina, V. F., and McCutcheon, S. C. (2002). “Phytoremediation: An ecological solution to organic chemical contamination.” Ecol. Eng., 18(5), 645–658.
Tarafdar, J. C., and Rao, A. V. (1997). “Mycorrhizal colonization and nutrient concentration of naturally grown plants on gypsum mine spoils in India.” Agric., Ecosyst. Environ., 61, 13–18.
Tassi, E., Pougel, J., Petruzzelli, G., and Barbafieri, M. (2008). “The effects of exogenous plant growth regulators in the phytoextraction of heavy metals.” Chemosphere, 71(1), 66–73.
Topp, E., Scheunert, I., Attar, A., and Korte, F. (1986). “Factors affecting the uptake of 14-C-labeled organic chemicals by plants from soil.” Ecotoxicol. Environ. Saf., 11, 219–228.
Trotta, A., et al. (2006). “Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L.” Chemosphere, 65(1), 74–81.
Tsao, D. T. (2003). “Overview of phytotechnologies.” Phytoremediation, D. T. Taso, ed., Springer, Berlin, 1–50.
United States Environmental Protection Agency (USEPA). (2003). “Phytoremediation of groundwater at Air Force Plant 4, Carswell Texas.” Environmental Innovative Technology Evaluation Rep. No. EPA/540/R-03/506, USEPA, Cincinnati.
Vivas, A., Biró, B., Németh, T., Barea, J. M., and Azcón, R. (2006). “Nickel-tolerant Brevibacillus brevis and arbuscular mycorrhizal fungus can reduce metal acquisition and nickel toxicity effects in plant growing in nickel supplemented soil.” Soil Biol. Biochem., 38(9), 2694–2704.
Walton, B. T., Hoylman, A. M., Perez, M. M., Anderson, T. A., and Johnson, T. R. (1994). “Rhizosphere microbial community as a plant defense against toxic substances in soils.” Bioremediation through rhizosphere technology, T. A. Anderson and J. R. Coats, eds., American Chemical Society, Washington, D.C., 82–92.
Wang, F. Y., Lin, X. G., and Yin, R. (2007). “Effect of arbuscular mycorrhizal fungal inoculation on heavy metal accumulation of maize grown in a naturally contaminated soil.” Int. J. Phytoremed., 9(4), 345–353.
Weissenhorn, I., Leyval, C., and Berthelin, J. (1995). “Bioavailability of heavy metals and abundance of arbuscular mycorrhiza (AM) in a soil polluted by atmospheric deposition from a smelter.” Biol. Fertil. Soils, 19, 22–28.
Welch, R. M., and La Rue, T. A. (1990). “Physiological characteristics of Fe accumulation in the ‘bronze’ mutant of Pisum sativum L., cv ‘Sparkle’ E107 (brz brz).” Plant Physiol., 93, 723–729.
Wenzel, W. W., Adriano, D. C., Salt, D., and Smith, R. (1999). “Phytoremediation: A plant-microbe-based remediation system.” Bioremediation of contaminated soils, D. C. Adriano, J. M. Bollag, W. T. Frankenberger, Jr., and R. C. Sims, eds., Agronomy Monograph, No. 37, Soil Science Society of America, Madison, Wis., 456–508.
Weyens, N., Barac, T., Boulet, J., van der Lelie, D., Taghavi, S., and Vangronsveld, J. (2007). “Role of plant-associated bacteria to improve in situ phytoremediation of BTEX and TCE.” Proc., Abstract Proc. 4th Int. Phytotechnologies Conf., 17–16.
White, J. C. (2007). “Phytoremediation of persistent organic pollutants with Cuburbita peop: Mechanistic studies and field application.” Proc., Abstract Proc. 4th Int. Phytotechnologies Conf., 75–76.
Wolfe, N. L. (1994). Biochemical remediation using plant enzymes, Technical Rep. No. EPA-600/R-94/092, USEPA, Cincinnati.
Zeeb, B. A., Whitfield Aslund, M., and Rutter, A. (2007). “Phytoremediation of organochlorines: Results from greenhouse and in situ field studies in PCB- and DDT-contaminated soils.” Proc., Abstract Proc. 4th Int. Phytotechnologies Conf., 71–72.
Zu, X., Venosa, A. D., Suidan, M., and Lee, K. (2004). “Guidelines for the bioremediation of oil-contaminated salt marshes.” Technical Rep. No. EPA-600/R-04/074, USEPA, Cincinnati.

Information & Authors

Information

Published In

Go to Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management
Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management
Volume 12Issue 4October 2008
Pages: 290 - 298

History

Received: Mar 3, 2008
Accepted: Mar 3, 2008
Published online: Oct 1, 2008
Published in print: Oct 2008

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, Dept. of Marine Environment and Engineering, National Sun Yat-sen Univ., 70 Lien-Hai Rd., Kaohsiung 80424, Taiwan. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share