TECHNICAL PAPERS
Dec 1, 1999

Effects of Soils on Laser Induced Fluorescence of BTX Contaminated Pore Waters

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 125, Issue 12

Abstract

A laboratory testing program was conducted to identify and interpret the fundamental factors affecting the performance of a new microchip-laser based fluorescence sensor in soil and ground water. Investigations were performed using a versatile experimental apparatus designed to simulate the in situ interface between the laser induced fluorescence (LIF) sensor and contaminated media while providing complete control of test conditions. Attempts were made to isolate the effects of soil properties such as grain size, soil type, color, mineralogy, and organic content on in situ LIF observations. Test results indicate that soil has no measurable effect on the determination of pore fluid fluorescence lifetimes or the general form of pore fluid emission wavelength profiles. However, for a given contaminant concentration in the pore space of a soil with a narrow grain size distribution, decreases in soil grain size are accompanied by a decrease in the magnitude and variability of observed LIF signals. For soils containing a wide range of particle sizes, in-soil LIF observations are primarily influenced by pore space geometry in relation to the smallest particles present in the soil. These trends were found to be a primary function of the volume of pore fluid in a soil specimen that is in the direct path of laser excitation energy. Soil organic content and optical characteristics such as reflectivity also have potential influence on in-soil LIF observations, although on a secondary basis. After reviewing these experimental results, which indicate the relative impact of soil properties on fluorescence observations, a simple geometric model is presented that captures the primary effects of soil on pore fluid fluorescence observations.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Apitz, S, E., Theriault, G. A., and Lieberman, S. H. (1992). “Optimization of the optical characteristics of a fiber-optic guided laser fluorescence technique for the in situ evaluation of fuels in soils.” Proc. SPIE, Vol. 1637, SPIE, Bellingham, Wash., 241–254.
2.
Bloch, J., Johnson, B., Newbury, N., Germaine, J., Hemond, H., and Sinfield, J. (1998). “Field test of a novel microlaser-based probe for in situ fluorescence sensing of soil contaminants.” Appl. Spectroscopy, 52(10), 1299–1304.
3.
Chudyk, W. A., Carrabba, M. M., Jarvis, G. B., and Kenny, J. E. (1985). “Prototype laser fluorescence/fiber optics groundwater contaminant detector.” Proc., Spec. Conf. on Envir. Engrg., ASCE, New York, 98–103.
4.
Gillispie, G. D., and St. Germain, R. W. (1992). “In-situ tunable laser fluorescence analysis of hydrocarbons.” Environmental process and treatment technologies, Proc. SPIE, T. Vo-Dihn, ed., Vol. 1637, SPIE, Bellingham, Wash., 159–171.
5.
Knowles, D. S., and Lieberman, S. H. (1995). “Field results from the SCAPS Laser-Induced Fluorescence (LIF) sensor for in-situ, subsurface detection of petroleum hydrocarbons.” Proc. SPIE, Vol. 2504, SPIE, Bellingham, Wash., 297–307.
6.
Ladd, R. S. (1978). “Preparing test specimen using undercompaction.” ASTM Geotech. Testing J., 1(1), 16–23.
7.
Lieberman, S. H., Apitz, S. E., Borbridge, L. M., and Theriault, G. A. (1993). “Subsurface screening of petroleum hydrocarbons in soils via laser induced fluorometry over optical fibers with a cone penetrometer system.” Proc. SPIE, Vol. 1716, SPIE, Bellingham, Wash., 392–402.
8.
Moise, N., Vasile, A., and Pascu, M. L. (1995). “Measuring of water and soil contamination with oil components using laser induced fluorescence transmitted through optical fibers.” Proc. SPIE, Vol. 2461, SPIE, Bellingham, Wash., 636–643.
9.
Roch, T., Lohmannsroben, H. G., and Meyer, T. (1995). “Laser-induced fluorescence analysis of PAC-doped model oils on alumina, sand, and soil surfaces.” Proc. SPIE, Vol. 2504, SPIE, Bellingham, Wash., 453–464.
10.
Sinfield, J. V. ( 1997). “Fluorescence of contaminants in soil and groundwater using a time-resolved microchip laser system,” Doctor of Science thesis, Massachusetts Inst. of Technol., Cambridge, Mass.
11.
Swan, C. W. ( 1994). “Physical mechanisms controlling the strength and deformation behavior of unfrozen and frozen Manchester fine sand,” Doctor of Science thesis, Dept. of Civ. Engrg. and Envir. Engrg., Massachusetts Inst. of Technol., Cambridge, Mass.
12.
Zayhowski, J. J., and Dill, C. III. (1994). “Diode-pumped passively Q-switched picosecond microchip lasers.” Optics Letters, 19(18), 1427–1429.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 125Issue 12December 1999
Pages: 1072 - 1077

History

Received: Nov 17, 1998
Published online: Dec 1, 1999
Published in print: Dec 1999

Permissions

Request permissions for this article.

Authors

Affiliations

Associate Member, ASCE
Members, ASCE
Postdoctoral Assoc., Dept. of Civ. and Envir. Engrg., Massachusetts Inst. of Technol., 77 Massachusetts Ave., Cambridge, MA 02139.
Prin. Res. Assoc., Dept. of Civ. and Envir. Engrg., Massachusetts Inst. of Technol., 77 Massachusetts Ave., Cambridge, MA.
Prof. of Civ. and Envir. Engrg., Dept. of Civ. and Envir. Engrg., Massachusetts Inst. of Technol., 77 Massachusetts Ave., Cambridge, MA.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share