TECHNICAL PAPERS
Jan 1, 2007

Linking Long-Term Water Balances and Statistical Scaling to Estimate River Flows along the Drainage Network of Colombia

Publication: Journal of Hydrologic Engineering
Volume 12, Issue 1

Abstract

Long-term average river discharges as well as peak and low flows of different return periods are estimated along the entire river network of Colombia, through the conjoint use of the long-term water balance in the river basins and the framework of statistical scaling, taking the average flow field as the scaling variable. Estimation of the long-term water balance considers the spatial variability of hydrologic fields, in which drainage basins are considered the basic hydrological control volumes for estimation. A systematic effort has been made to estimate the long term average precipitation field combining rain gauge measurements with existing handmade expert maps as an input trend for a universal Kriging interpolation technique. Evaluation of estimates for actual and potential long-term evapotranspiration was implemented using diverse methods. Results were tested using the long term water balance equation against 200 streamflow gauging stations. No method for actual evapotranspiration showed significant superiority. Overall, we conclude that the magnitude of errors arises fundamentally from deficiencies in the data and the sparsity of the observations.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This work has been supported by UPME from the Ministry of Mining and Energy of Colombia, by COLCIENCIAS, by DIME from Universidad Nacional de Colombia, and by the Interamerican Institute for Global Change Research (IAI). The first author is grateful to CIRES (U. Colorado, Boulder) for support as a Visiting Fellow. The writers thank H. Diaz, V. K. Gupta, P. R. Waylen, E. Machado, and A. Jaramillo and three anonymous reviewers for helpful comments. To the Distributed Active Archive Center (DAAC) at the Goddard Space Flight NASA Center, for providing access to radiation data sets, to the USGS for access to the GTOPO30 data, to LBA project for precipitation data from the Amazon, to K. Dunne for providing the water holding capacity data, and to Empresas Públicas de Medellin (EPM), Corporación del Valle del Cauca (CVC), and Cenicafé for providing access to data.

References

Band, L. E. (1986). “Topographic partition of watersheds with digital elevation models.” Water Resour. Res., 22(1), 15–24.
Bobee, B., Cavadias, G., Ashkar, F., Bernier, J., and Rasmussen, P. F. (1993). “Towards a systematic approach to comparing distribution used in flood frequency analysis.” J. Hydrol., 142(1–4), 121–136.
Bras, R. L., and Rodríguez-Iturbe, I. (1984). Random functions and hydrology, Dover, New York.
Brutsaert, W., and Parlange, M. (1998). “Hydrologic cycle explains the evaporation paradox.” Nature (London), 396, 30.
Budyko, M. (1974). Climate and life, Academic, London.
Chaves, B., and Jaramillo, A. (1998). “Regionalization of air temperature in Colombia.” Revista Cenicafé, 24, 91–104 (in Spanish).
Choudhury, B. J. (1999). “Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model.” J. Hydrol., 216(1–2), 99–110.
Chow, V. T. (1951). “A general formula for hydrologic frequency analysis.” Trans., Am. Geophys. Union, 32, 231–237.
Chow, V. T., ed. (1964). Handbook of applied hydrology, Vol. 8, McGraw-Hill, New York, 1–90.
Coutagne, A. (1954). “Quelques considérations sur le pouvoir évaporant de l’atmosphere, le déficit d’écoulement effectif et le déficit d’écoulement maximum.” La Houille Blanche, 360–369 (in Spanish).
Darnell, W. L., Staylor, W. G., Ritchey, N. A., Gupta, S. K., and Wilber, A. C. (1996). “Surface radiation budget: A long-term global dataset of shortwave and longwave fluxes.” EOS Transactions, Electronic Supplement.
Departamento Nacional de Planeación (DNP). (1984). National Water Study, Main Rep. J. F. Mejía, Millán y Perry, eds., Bogotá, Columbia (in Spanish).
Diodato, N. (2005). “The influence of topographic co-variables on the spatial variability of precipitation over little regions of complex terrain.” Int. J. Climatol., 25(3), 351–363.
Dunne, K. A., and Willmott, C. J. (1996). “Global distribution of plant extractable water capacity of soil.” Int. J. Climatol., 16(8), 841–859.
Eagleson, P. S. (1972). “Dynamics of flood frequency.” Water Resour. Res., 87(8), 8–98.
Eagleson, P. S. (1994). “The evolution of modern hydrology (from watershed to continent in 30years ).” Adv. Water Resour., 17(1–2), 3–18.
Eslava, J. A. (1995). Atmospheric pressure in Colombia, Academia Colombiana de Ciencias Exactas, Físicas y Naturales, Colección Jorge Alvarez Lleras, No. 8, Bogotá, Colombia (in Spanish).
Furey, P. R., and Gupta, V. K. (2000). “Space-time variability of low streamflows in river networks.” Water Resour. Res., 36(9), 2679–2690.
Garbrecht, J., and Martz, W. M. (1994). “Grid size dependency of parameters extracted from digital elevation models.” Comput. Geosci., 20(1), 85–87.
Gómez-Hernández, J. J., and Cassiraga, E. F. (2000). “Incorporating information from a digital elevation model for improving the areal estimation of rainfall.” Proc., geoENV III-Geostatistics for Environmental Applications, Avignone, Kluwer Academic, Dordrecht, The Netherlands, 67–78.
Goodrich, D. C., Lane, L. J., Shillito, R. M., Miller, S. N., Syed, K. H., and Woolhiser, D. A. (1997). “Linearity of basin response as a function of scale in a semiarid watershed.” Water Resour. Res., 33(12), 2951–2965.
Goovaerts, P. (2000). “Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall.” J. Hydrol., 228(1–2), 113–129.
Gupta, V. K. (2004). “Emergence of statistical scaling in floods on channel networks from complex runoff dynamics.” Chaos, Solitons Fractals, 19(2), 357–365.
Gupta, V. K., and Dawdy, D. R. (1995). “Physical interpretation of regional variations in the scaling exponents of flood quantiles.” Hydrolog. Process., 9(3/4), 347–361.
Gupta, V. K., Mesa, O. J., and Dawdy, D. R. (1994). “Multiscaling theory of flood peaks: Regional quantile analysis.” Water Resour. Res., 30(12), 3405–3421.
Gupta, V. K., and Waymire, E. (1990). “Multiscaling properties of spatial rainfall and river flow distributions.” J. Geophys. Res., 95(3), 1999–2009.
Gupta, V. K., and Waymire, E. (1998). “Spatial variability and scale invariance in hydrologic regionalization.” Scale dependence and scale invariance in hydrology, G. Sposito, ed., Cambridge, London, 88–135.
Hastenrath, S. (1991). Climate dynamics of the tropics, Kluwer, Dordrecht, The Netherlands.
Hobbins, M. T., Ramirez, J. A., Brown, T. C., and Classens, L. H. J. M. (2001). “The complementary relationship in the estimation of regional evapotranspiration: The complementary relationship areal evapotranspiration and advection-aridity models.” Water Resour. Res., 37(5), 1367–1387.
Holdridge, L. R. (1978). Life zone ecology, IICA, Tropical Science Center, San José de Costa Rica.
Hoskings, J. R. M. (1990). “L-moments: analysis and estimation of distributions using linear combinations of order statistics.” J. R. Stat. Soc. Ser. B (Methodol.), 52, 105–124.
Instituto Geográfico Agustín Codazzi (IGAC). (1998). Soils and forests of Colombia, Bogotá, Colombia (in Spanish).
Jarvis, R. S., and Woldenberg, M. J. (1984). River networks, Benchmark Papers in Geology, Vol. 80, Hutchinson Ross, Stroudsburg, Pa.
Kirby, W., and Moss, M. (1987). “Summary of flood frequency analysis in the United States.” J. Hydrol., 96(1–4), 5–14.
Leopold, L. B., and Maddock, T., Jr. (1953). “The hydraulic geometry of stream channels and some physiographic implications.” U.S. Geological Survey Professional Paper, 252, Washington, D.C., 1–57.
Manabe, S. (1969). “Climate and the ocean circulation. I. The atmospheric circulation and the hydrology of the earth’s surface.” Mon. Weather Rev., 97(11), 739–774.
Mantilla, R. I., and Gupta, V. K. (2005). “A GIS numerical framework to study the process basis of scaling statistics in river networks.” IEEE Geosc. Rem. Sens. Lett., 2(4), 404.
Meeson, B. W., Corprew, F. E., McManus, J. M. P., Myers, D. M., Closs, J. W., Sun, K. J., Sunday, D. J., and Sellers, P. J. (1995). ISLSCP initiative I-global data sets for land-atmosphere models, 1987–1988. Vols. 1–5, NASA, Washington, D.C. (CD-ROM).
Mejía, J. F., et al. (1999). “Spatial distribution, annual and semi-annual cycles of precipitation in Colombia.” DYNA, 127, 7–26 (in Spanish).
Menabde, M., and Sivapalan, M. (2001). “Linking space-time variability of river runoff and rainfall fields: A dynamic approach.” Adv. Water Resour., 24(9), 1001–1014.
Meyer, A. F. (1942). Evaporation from lakes and reservoirs, Minnesota Resources Commission, St. Paul, Minn.
Morton, F. I. (1983). “Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology.” J. Hydrol., 66(1–4), 1–76.
Ogden, F., and Dawdy, D. R. (2003). “Peak discharge scaling in a small Hortonian watershed.” J. Hydrol. Eng., 8(2), 64–73.
Oster, R. (1979). “Precipitation in Colombia.” Revista Colombia Geográfica, 6 (in Spanish).
Penman, H. L. (1948). “Natural evaporation from open water, bare soil and grass.” Proc. R. Soc. London, Ser. A, 193, 120–45.
Pourrut, P. (1994). L’eau en Équateur. Principaux Acquis en Hydroclimatologie, ORSTOM Éditions, Institute Français de Recherche Scientifique pour le Développenment en Coopération. Collection Études et Thèses, Paris (in French).
Poveda, G., and Mejía, J. F. (2004). “Statistical scaling patterns of mesoscale convective systems over Colombia and the eastern Pacific Ocean using TRMM information.” Avances en Recursos Hidráulicos, 11, 131–143 (in Spanish).
Poveda, G., and Mesa, O. J. (2000). “On the existence of Lloró (the rainiest locality on Earth): Enhanced ocean-atmosphere-land interaction by a low-level jet.” Geophys. Res. Lett., 27(11), 1675–1678.
Poveda, G., Mesa, O. J., Salazar, L. F., Arias, P. A., Moreno, H. A., Vieira, S. C., Agudelo, P. A., Toro, V. G., and Alvarez, J. F. (2005). “The diurnal cycle of precipitation in the tropical Andes of Colombia.” Mon. Weather Rev., 113(1), 228–240.
Poveda, G., and Salazar, L. F. (2004). “Annual and interannual (ENSO) variability of spatial scaling properties of a vegetation index (NDVI) in Amazonia.” Remote Sens. Environ., 93(3), 391–401.
Poveda, G., Vélez, J. I., Mesa, O. J., Ceballos, L. I., Zuluaga, M. D., and Hoyos, C. D. (2002). “Estimation of low flows in Colombia through regionalisation and base flow recession.” Meteorología Colombiana, 6, 73–80 (in Spanish).
Priestley, C. H. B., and Taylor, R. J. (1972). “On the assessment of surface heat flux and evaporation using large scale parameters.” Mon. Weather Rev., 100(2), 82–92.
Ramírez, J. M., and Vélez, J. I. (2002). “Strategies for automatic extraction of drainage river networks from digital elevation models.” Avances en Recursos Hidráulicos, 9, 69–82 (in Spanish).
Schaake, J. C. (1990). “From climate to flow.” Climate change and United States water resources, P. E. Waggoner, ed., Wiley, New York, 177–206.
Schertzer, D., Hubert, P., and Lovejoy, S. (2002). “Scaling, multifractales and predictions in ungaged basins: Where we’ve been, where we’re going?” Communications of the Brasilia PUB meeting, P. Hubert, D. Schertzer, K. Takeuchi, and S. Koide, eds., Brasilia, 20–22.
Sellers, P. J. (1995). “An overview of the ISLSCP initiative I global data sets.” ISLSCP initiative I-global data sets for land-atmosphere models, 1987–1988, Vols. 1–5, NASA, Washington, D.C., (CD-ROM).
Singh, V. P., ed. (1995). Computer models of watershed hydrology, Water Resources Publications, Littleton, Colo.
Smith, J. D. (1992). “Representation of basin scale in flood peak distributions.” Water Resour. Res., 28(11), 2993–2999.
Sposito, G., ed. (1998). Scale dependence and scale invariance in hydrology, Cambridge, London.
Szilagy, J. (2001). “On Bouchet’s complementary hypothesis.” J. Hydrol., 246(1), 155–158.
Thornwaite, C. W. (1948). “An approach towards a rational classification of climate.” Geogr. Rev., 38, 55–89.
Turc, L. (1955). “Le bilan de l’aue des sols.” Relations entre les precipitations, l’evaporation et l’ecoulement, INRA, Paris (in French).
Turc, L. (1962). “Estimation of irrigation water requirements, potential evapotranspiration: A simple climatic formula evolved up to date.” Ann. Agron., 12, 13–49.
Vélez, J. I., Poveda, G., and Mesa, O. J. (2000). Water balance of Colombia, Todograficas, Medellín (in Spanish).
Vogel, R. M., and Sankarasubramanian, A. (2000). “Spatial scaling properties of annual streamflow in the United States.” Hydrol. Sci. J., 45(3), 465–476.
Vörösmarty, C. J., Federer, C. A., and Schloss, A. L. (1998). “Potential evaporation functions compared on U.S. watersheds: Possible implications for global-scale water balance and terrestrial ecosystem modeling.” J. Hydrol., 207(3), 147–169.
Wallace, M., and Hobbs, P. V. (1977). Atmospheric science, an introductory survey, Academic, Orlando, Fla.
Zolotarev, V. M. (1986). One-dimensional stable distributions, American Mathematical Society Translation of Mathematic Monographs, Vol. 65, American Mathematical Society, Providence, R.I.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 12Issue 1January 2007
Pages: 4 - 13

History

Received: Jun 3, 2003
Accepted: Apr 26, 2006
Published online: Jan 1, 2007
Published in print: Jan 2007

Permissions

Request permissions for this article.

Authors

Affiliations

Germán Poveda
Escuela de Geociencias y Medio Ambiente, Univ. Nacional de Colombia, Medellín, Colombia.
Jaime I. Vélez
Escuela de Geociencias y Medio Ambiente, Univ. Nacional de Colombia, Medellín, Colombia.
Oscar J. Mesa
Escuela de Geociencias y Medio Ambiente, Univ. Nacional de Colombia, Medellín, Colombia.
Adriana Cuartas
Ph.D. Student, Centro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas Espaciais, Cachoeira Paulista, SP, Brazil.
Janet Barco
Ph.D. Student, Dept. of Civil and Environmental Engineering, Univ. of California, Los Angeles, CA.
Ricardo I. Mantilla
Ph.D. Student, Dept. of Civil and Environmental Engineering, Univ. of Colorado, Boulder, CO.
John F. Mejía
Ph.D. Student, Cooperative Institute for Mesoscale Meteorological Studies, Univ. of Oklahoma, Norman, OK.
Carlos D. Hoyos
Ph.D. Student, School of Earth and Atmospheric Sciences and Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA.
Jorge M. Ramírez
Ph.D. Student, Dept. of Mathematics, Univ. of Oregon, Corvallis, OR.
Lina I. Ceballos
Ph.D. Student, School of Earth and Atmospheric Sciences and Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA.
Manuel D. Zuluaga
Ph.D. Student at Schools of Earth and Atmospheric Sciences and Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA.
Paola A. Arias
Ph.D. Student, Schools of Earth and Atmospheric Sciences and Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA.
Blanca A. Botero
Ph.D. Student, Dept. de Ingeniería Hidráulica y Medio Ambiente, Univ. Politécnica de Valencia, Valencia, Spain.
María I. Montoya
Ph.D. Student, Cooperative Institute for Mesoscale Meteorological Studies, Univ. of Oklahoma, Norman, OK.
Juan D. Giraldo
Ph.D. Student, Schools of Earth and Atmospheric Sciences and Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA.
Diana I. Quevedo
Ph.D. Student, Dept. de Ingeniería Hidráulica y Medio Ambiente, Univ. Politécnica de Valencia, Valencia, Spain.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share