TECHNICAL PAPERS
May 15, 2003

Signal-Based Acoustic Emission Techniques in Civil Engineering

Publication: Journal of Materials in Civil Engineering
Volume 15, Issue 3

Abstract

The acoustic emission (AE) technique can be a useful method for the investigation of local damage in materials. One of the advantages compared to other techniques is the recording of the damage process during the entire load history without any disturbance to the specimen. Differences between the traditional parameter-based and newer signal-based techniques are described along with some examples of measurements to study the steel-concrete interaction in reinforced-concrete cubes. Signal-based procedures, such as accurate 3D localization of damage sources, solutions for fault plane orientation, and moment tensor inversion, are described with respect to applications in civil engineering. The more quantitative analysis of the signals is based on a 3D localization of AE sources (hypocenters) and the recordings obtained from a sensor network. Using moment tensor inversion methods, the radiation pattern of acoustic emission sources and the seismic moment (as an equivalent to the emitted energy), as well as the type (Mode I, Mode II, and mixed modes) and orientation of the cracks, can be determined.

Get full access to this article

View all available purchase options and get full access to this article.

References

Aki, K., and Richards, P. G. (1980). Quantitative seismology, Vol. 1, Freeman, New York.
Berthelot, J.-M., and Robert, J. L.(1987). “Modeling concrete damage by acoustic emission.” J. Acoustic Emission, 6, 43–60.
Buland, R.(1976). “The mechanics of locating earthquakes.” Bull. Seismol. Soc. Am., 66, 173–187.
Dahlen, F. A., and Tromp, J. (1998). Theoretical global seismology, Princeton University Press, Princeton, N.J.
Dahm, T. (1993). “Relativmethoden zur Bestimmung der Abstrahlcharakteristik von seismischen Quellen.” Doctoral thesis, Univ. of Karlsruhe, Karlsruhe, Germany.
Drouillard, T. F.(1996). “A history of acoustic emission.” J. Acoustic Emission, 14(1), 1–34.
Efron, B., and Tibshirani, R.(1986). “Bootstrap methods for standard errors, confidence intervals and other measures of statistical accuracy.” Stat. Sci., 1, 54–77.
Finck, F. (2001). “Application of the moment tensor inversion in material testing.” Otto Graf J., 12, 145–156, 〈http://www.fmpa.de/english/Journal/2001/13_Beitrag_Finck.html〉 (Jan. 26, 2002).
Fowler, C. M. R. (1990). The solid earth: An introduction to global geophysics, Cambridge University Press, New York.
Geiger, L. (1910). “Herdbestimmung bei Erdbeben aus den Ankunftszeiten [Probability method for the determination of earthquake epicenters from the arrival time only].” Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, 4, 331–349.
Grosse, C. U. (1996). “Quantitative zerstörungsfreie Prüfung von Baustoffen mittels Schallemissions—Analyse und Ultraschall.” Doctoral thesis, Univ. of Stuttgart, Stuttgart, Germany, 〈http://iwb.uni-stuttgart.de/∼grosse/Papers/Diss/deckblatt.html〉 (Jan. 26, 2002).
Grosse, C. U. (1999). “Grundlagen der Inversion des Momententensors zur Analyse von Schallemissions—Quellen.” Werkstoffe und Werkstoffprüfung im Bauwesen, Festschrift zum 60, Geburtstag von Prof. Dr. Ing. H. W. Reinhardt, C. U. Grosse, ed., Libri BOD, Hamburg, Germany, 82–105.
Grosse, C. U. (2000). “WinPecker—Programm zur vollautomatischen dreidimensionalen Lokalisierung von Schallemissionsquellen.” 12 Koll. Schallemission, DGZfP Berichtsband, 72, 191–204, 〈http://iwb.uni-stuttgart.de/∼grosse/papers/SEP-Jena-Poster1.pdf〉 (Jan. 26, 2002).
Grosse, C. U., and Reinhardt, H. W.(1999). “Entwicklung eines Algorithmus zur automatischen Lokalisierung von Schallemissionsquellen.” Die Materialprüfung, 41, 342–347.
Grosse, C. U., Reinhardt, H. W., and Dahm, T. (1997). “Localization and classification of fracture types in concrete with quantitative acoustic emission measurement techniques.” NDT Int., 30, 223–230.
Hamstad, M. A., O’Gallagher, A., and Gary, J. (2002). “A wavelet transform applied to acoustic emission signals: Part 1. Source identification.” J. Acoustic Emission, in press.
Jost, M. L., and Hermann, R. B.(1989). “A students guide to and review of moment tensors.” Seismol. Res. Lett., 60, 37–57.
Kapphahn, G., Quade, J., and Steffens, K. (1993). “SEA-Prüfung bei der in-situ—Traglastermittlung von Stahl- und Spannbetonkonstruktionen.” DGZfP-Jahrestagung in Garmisch-Partenkirchen, Vorträge und Plakatberichte DGZfP, 37(1), 506–513.
Knopoff, L., and Randall, M. J.(1970). “The compensated linear-vector dipole: A possible mechanism for deep earthquakes.” J. Geophys. Res., 75(26), 4957–4963.
Köppel, S. (2002). “Schallemissionsanalyse zur Untersuchung von Stahlbetontragwerken.” Doctoral thesis, ETH Univ., Zürich, Switzerland.
Köppel, S., and Grosse, C. U. (2000). “Advanced acoustic emission techniques for failure analysis in concrete.” Proc., 15th World Conf. on NDT, Italian Society of Nondestructive Testing, Mon. Diag. (AIPnD) (CD-Rom).
Labuz, J. F., Chang, H. S., Dowding, C. H., and Shah, S. P.(1988). “Parametric study of AE location using only four sensors.” Rock Mech. Rock Eng., 21, 139–148.
Ohtsu, M., Shigeishi, M., Iwase, H., and Koyanagi, W.(1991). “Determination of crack location, type and orientation in concrete structures by acoustic emission.” Mag. Concrete Res., 43(155), 127–134.
Oncescu, L., and Grosse, C. U. (1998). “HYPOAE—A program for the localization of hypocenters of acoustic emissions.” 〈http://iwb.uni-stuttgart.de/∼grosse/hypo_wer.htm〉 (Jan. 26, 2002).
Pazdera, L., and Smutny, J. (2001). “Using non-traditional tool—Discrete wavelet transformation for analysis of acoustic emission signal.” Proc., Acoustic Emission (AE2001), 〈http://cmspro.fme.vutbr.cz/uk/odbory/vav/konf.htm〉 (Jan. 26, 2002).
Sachse, W., and Kim, K. Y.(1987). “Quantitative acoustic emission and failure mechanics of composite materials.” Ultrasonics, 25, 195–203.
Salamon, M. D. G., and Wiebols, G. A.(1974). “Digital location of seismic events by an underground network of seismometers using the arrival times of compressional waves.” Rock Mech., 6, 141–166.
Scruby, C. B.(1985). “Quantitative acoustic emission techniques.” Nondestr. Test. (Chicago), 8, 141–210.
Vallen, H., and Forker, J.(2001). “Optimierung der Analyse von Daten der Schallemissionsprüfung eines vorgeschädigten Objekts während dem Bersttest.” 13 Koll. Schallemission, DGZfP, 78, 11–21.
Wadley, H. N. G., and Scruby, C. B.(1983). “Elastic wave radiation from cleavage crack extension.” Int. J. Fract., 23, 111–128.
Weiler, B. (2000). “Zerstörungsfreie Untersuchung von Stahlfaserbeton.” Doctoral thesis, Univ. of Stuttgart, Stuttgart, Germany.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 15Issue 3June 2003
Pages: 274 - 279

History

Received: Mar 5, 2002
Accepted: Sep 5, 2002
Published online: May 15, 2003
Published in print: Jun 2003

Permissions

Request permissions for this article.

Authors

Affiliations

Christian U. Grosse
Dr.-Ing. Dipl.-Geophys., Work Group Leader of Non-Destructive Testing Group, Institute of Construction Materials, Univ. of Stuttgart, Stuttgart, Germany.
Hans W. Reinhardt
Professor, Dr.-Ing., Director of the Institute of Construction Materials, Institute of Construction Materials, Univ. of Stuttgart, Stuttgart, Germany.
Florian Finck
Dipl.-Geophys., PhD Student, Institute of Construction Materials, Univ. of Stuttgart, Stuttgart, Germany.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share