TECHNICAL PAPERS
Jul 1, 2001

Reinforced, Partially, and Fully Prestressed Slender Concrete Columns under Biaxial Bending and Axial Load

Publication: Journal of Structural Engineering
Volume 127, Issue 7

Abstract

An analytical model that determines the inelastic structural response, ultimate strength, and failure mode of reinforced concrete, partially prestressed concrete, and prestressed concrete slender columns of any cross section under biaxial bending and axial load is presented. The effects of rotational and lateral restraints at the ends are included, but the effects of shear deformations and torsional moments along the member are neglected. The proposed method uses (1) a nonlinear stress-strain relationship for the concrete; (2) a multilinear elastic-plastic relationship for the conventional reinforcement; (3) a modified Ramberg-Osgood function for the prestressed steel; (4) Gauss's integral method for equilibrium at the sectional level to generate the moment-axial load-curvature characteristics (i.e., M-P-ϕ diagrams) along the member; and (5) the finite-element method to evaluate the transverse deflections and second-order moments (P-δ and P-Δ effects) along the member. The proposed method can be utilized (1) to study the effects of creep, confinement, and tension-stiffening in the concrete and relaxation in the prestressed steel on the behavior, strength, ductility, and failure mode of slender concrete columns; and (2) to analyze prismatic and nonprismatic slender concrete columns of an arbitrary cross section under different end supports and bracing conditions. The biaxial bending behavior, strength, ductility, and failure mode of slender concrete columns can be obtained using a minicomputer, and as expected, they depend on (1) bracing and support conditions; (2) cross section and reinforcement layout along its span; (3) the stress-strain characteristics of the concrete and different reinforcements; and (4) the type and intensity of the applied loads. Three numerical examples are presented in detail to verify and show the effectiveness of the proposed method.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Aboutaha, A. S., and Machado, R. I. (1999). “Seismic resistance of steel-tubed high-strength reinforced-concrete columns.”J. Struct. Engrg., ASCE, 125(5), 485–494.
2.
Aghayere, A. O. ( 1990). “Design of nonprismatic concrete columns by the degree of fixity method.” ACI Struct. J., 87(4), 473–478.
3.
Ahmad, S. H., and Weerakoon, S. L. ( 1995). “Model for behavior of slender reinforced concrete columns under biaxial bending.” ACI Struct. J., 92(2), 188–198.
4.
Aho, M. F., and Leon, R. T. ( 1977). “A database for encased and concrete-filled columns.” Rep. No. 97-01, School of Civ. and Envir. Engrg., Georgia Institute of Technology, Atlanta.
5.
Aristizabal-Ochoa, J. D. (1987). “Tapered Beam and Column Elements in Unbraced Frame Structures.”J. Comp. in Civ. Engrg., ASCE, 1(1), 35–49.
6.
Aristizabal-Ochoa, J. D. (1996). “Braced, partially braced and unbraced columns: Complete set of classical stability equations.”J. Struct. Engrg. and Mech., 4(4), 365–381.
7.
Aroni, S. (1968). “Slender prestressed concrete columns.”J. Struct. Div., ASCE, 94(4), 875–904.
8.
Basu, A. K., and Suryanarayana, P. ( 1975). “Analysis of restrained concrete columns under biaxial bending.” Reinforced concrete columns, American Concrete Institute, Detroit, 211–232.
9.
Bradford, M. A. ( 1996). “Design strength of slender concrete-filled rectangular steel tubes.” ACI Struct. J., 93(2), 229–235.
10.
Breen, J. E., and Ferguson, P. M. ( 1969). “Long cantilever columns subject to lateral forces.” ACI J., 66(11), 884–893.
11.
Brown, H. R., and Hall, A. S. ( 1966). “Tests on slender prestressed concrete columns.” Proc., Spec. Publ., Symp. on Reinforced Concrete Columns, American Concrete Institute, Detroit, 179–192.
12.
Chovichien, V., Gutzwiller, M. J., and Lee, R. H. ( 1973). “Analysis of reinforced concrete columns under sustained load.” ACI J., 70(10), 692–699.
13.
Dolan, B. E., Hamilton, H. R., and Dolan, C. W. ( 1998). “Strengthening with bonded FRP laminate.” Concrete Int., 20(6), 51–55.
14.
Drysdale, R. G., and Huggins, M. W. (1971). “Sustained biaxial load on slender concrete columns.”J. Struct. Div., ASCE, 97(5), 1423–1443.
15.
Farah, A., and Huggins, M. W. ( 1969). “Analysis of reinforced concrete subjected to longitudinal load and biaxial bending.” ACI J., 66(7), 569–575.
16.
Furlong, R. W. (1967). “Strength of steel-encased concrete beam-columns.”J. Struct. Div., ASCE, 93(10), 113–124.
17.
Furlong, R. W. (1968). “Design of steel-encased concrete beam-columns.”J. Struct. Div., ASCE, 94(1), 267–281.
18.
Furlong, R. W. ( 1979). “Concrete columns under biaxial eccentric thrust.” ACI J., 76(10), 1093–1118.
19.
Fyfe, E. R., Gee, D. J., and Milligan, P. B. ( 1998). “Composite systems for seismic applications.” Concrete Int., 20(6), 31–33.
20.
Goyal, B. B., and Jackson, N. (1971). “Slender concrete columns under sustained load.”J. Struct. Div., ASCE, 97(11), 2729–2750.
21.
Grauers, M. ( 1993). “Composite columns of hollow steel sections filled with high strength concrete.” Publ. No. 93:2, Chalmers University of Technology, Göteborg, Sweden.
22.
Green, R., and Breen, J. E. ( 1969). “Eccentrically loaded concrete columns under sustained load.” ACI J., 66(11), 866–874.
23.
Head, M. C., and Aristizabal-Ochoa, J. D. (1987). “Analysis of prismatic and linearly tapered reinforced concrete columns.”J. Struct. Engrg., ASCE, 113(3), 575–589.
24.
Izzuddin, B. A., Karayannis, C. G., and Elnashai, A. S. (1994). “Advanced nonlinear formulation for reinforced concrete beam-columns.”J. Struct. Engrg., ASCE, 120(10), 2913–2934.
25.
Jones, R., and Rizk, A. A. ( 1963). “An investigation of the behavior of encased steel column under load.” The Struct. Engr., London, 41(1), 21–33.
26.
Karayannis, C. G., and Elnashai, A. S. (1994). “Application of adaptive analysis to reinforced concrete frames.”J. Struct. Engrg., ASCE, 120(10), 2935–2957.
27.
Kawakami, M. T., Kagaya, M., and Hirata, M. ( 1985). “Limit states of cracking and ultimate strength of arbitrary concrete sections under biaxial loading.” ACI J., 82(1), 203–212.
28.
Kenneth, W. N., and Labossiere, P. ( 1998). “Fiber composite sheets in cold climate rehab.” Concrete Int., 20(6), 22–24.
29.
Knowles, R. B., and Park, R. (1969). “Strength of concrete filled tubular columns.”J. Struct. Div., ASCE, 95(12), 2565–2587.
30.
Knowles, R. B., and Park, R. (1970). “Axial load design for concrete filled steel tubes.”J. Struct. Div., ASCE, 96(10), 2125–2153.
31.
MacGregor, J. G., and Barter, S. L. ( 1965). “Long eccentrically loaded concrete columns bent in double curvature.” Proc., Symp. on Reinforced Concrete Columns, American Concrete Institute, Detroit, 139–156.
32.
Martin, I., and Olivieri, E. ( 1965). “Test of slender reinforced concrete columns bent in double curvature.” Proc., Symp. on Reinforced Concrete Columns, American Concrete Institute, Detroit, 121–138.
33.
Mavichak, V., and Furlong, R. W. ( 1976). “Strength and stiffness of reinforced concrete columns under biaxial bending.” Res. Rep. 7-2F, Ctr. for Hwy. Res., University of Texas at Austin, Austin, Tex.
34.
Menegotto, M., and Pinto, P. E. (1977). “Slender RC compressed members in biaxial bending.”J. Struct. Div., ASCE, 103(3), 587–605.
35.
Metwally, A. (1988). “Slender composite beam-columns.”J. Struct. Engrg., ASCE, 114(10), 2254–2267.
36.
Muñoz, P. R., and Hsu, C. T. T. (1997). “Behavior of biaxially loaded concrete-encased composite columns.”J. Struct. Engrg., ASCE, 123(9), 1163–1171.
37.
Nanni, A., and Gold, W. J. ( 1998). “Strength assessment of external FRP reinforcement.” Concrete Int., 20(6), 39–42.
38.
Pfrang, E. O. (1966). “Behavior of reinforced concrete columns with sidesway.”J. Struct. Div., ASCE, 92(3), 113–136.
39.
Pfrang, E. O., and Siess, C. P. (1964a). “Predicting structural behavior analytically.”J. Struct. Div., ASCE, 90(5), 99–111.
40.
Pfrang, E. O., and Siess, C. P. (1964b). “Behavior of restrained reinforced concrete columns.”J. Struct. Div., ASCE, 90(5), 113–136.
41.
Poston, R. W. (1986). “Nonlinear analysis of concrete bridge piers.”J. Struct. Engrg., ASCE, 112(9), 2041–2056.
42.
Poston, R. W., Breen, J. E., and Roesset, J. M. ( 1985a). “Analysis of nonprismatic or hollow slender concrete bridge piers.” ACI J., 82(5), 731–739.
43.
Poston, R. W., Gilliam, T. E., Yamamoto, Y., and Breen, J. E. ( 1985b). “Hollow concrete bridge pier behavior.” ACI J., 82(6), 779–787.
44.
Priestley, M. J., Seible, F., Xiao, Y., and Verma, R. ( 1994). “Steel jacket retrofitting of reinforced concrete bridge columns for enhanced shear strength—Part 1: Theoretical considerations and test design.” J. Am. Concrete Inst., 91(4), 394–405.
45.
Riad, L. ( 1965). “Eccentrically loaded reinforced concrete columns with variable cross section.” Proc., Symp. on Reinforced Concrete Columns, American Concrete Institute, Detroit, 245–262.
46.
Rodriguez, J. A., and Aristizabal-Ochoa, J. D. (1999). “Biaxial interaction diagrams for short RC columns of any cross section.”J. Struct. Engrg., ASCE, 125(6), 672–683.
47.
Rodriguez-Gutierrez, J. A., and Aristizabal-Ochoa, J. D. (2001). “M-P-ϕ diagrams for reinforced, partially, and fully prestressed concrete sections under biaxial bending and axial load.”J. Struct. Engrg., ASCE, 127(7), 763–773.
48.
Roik, K., Diekmann, C., and Schwalbenhofer, K. ( 1987). “Composite columns with steel fiber reinforced concrete.” Bauingenieur, 62(4), 179–182.
49.
Saadeghvaziri, M. A., and Foutch, D. A. (1990). “Behavior of RC columns under nonproportionally varying axial load.”J. Struct. Engrg., ASCE, 116(7), 1835–1856.
50.
Talbot, A. N. ( 1906). “Tests of concrete and reinforced concrete columns.” Bull. No. 10 and Bull. No. 20, University of Illinois, Urbana, Ill.
51.
Talbot, A. N., and Lord, A. R. ( 1912). “Tests of columns: An investigation of the value of concrete as reinforcement for structural steel columns.” Engrg. Experimental Station Bull. No. 56, University of Illinois, Urbana, Ill.
52.
Taylor, R., Shakir, H., and Yee, K. M. ( 1983). “Some tests on a new type of composite column.” Proc., Instn. Civ. Engrs., 283–296.
53.
Wang, C. K., and Salmon, C. G. ( 1985). Reinforced concrete design, 4th Ed., Harper & Row, New York, 556–562.
54.
Wang, G. G., and Hsu, C. T. T. (1992). “Complete biaxial load-deformation behavior of RC columns.”J. Struct. Engrg., ASCE, 118(9), 2590–2609.
55.
Wang, G. G., and Hsu, C. T. T. (1998). “Nonlinear analysis of reinforced concrete columns by cubic-spline function.”J. Engrg. Mech., ASCE, 124(7), 803–810.
56.
Warner, R. F. (1969). “Biaxial moment thrust curvature relation.”J. Struct. Div., ASCE, 95(5), 923–940.
57.
Wu, H., and Huggins, M. W. (1977). “Size and sustained load effects in concrete columns.”J. Struct. Div., ASCE, 103(3), 493–506.
58.
Yen, J. R. (1993). “Direct analysis of slender columns with P-delta effects.”J. Struct. Engrg., ASCE, 119(3), 871–890.
59.
Zhang, W., and Shahrooz, M. (1999). “Comparison between ACI and AISC for concrete-filled tubular columns.”J. Struct. Engrg., ASCE, 125(11), 1213–1223.
60.
Zia, P., and Moreadith, F. L. ( 1966). “Ultimate load capacity of prestressed concrete columns.” ACI J., 63(7), 767–786.

Information & Authors

Information

Published In

Go to Journal of Structural Engineering
Journal of Structural Engineering
Volume 127Issue 7July 2001
Pages: 774 - 783

History

Received: Mar 6, 2000
Published online: Jul 1, 2001
Published in print: Jul 2001

Permissions

Request permissions for this article.

Authors

Affiliations

J. A. Rodriguez-Gutierrez
J. Dario Aristizabal-Ochoa
Struct. Consultant, Calle 83 #45-29, Medellin, Colombia.
125-Year Generation Prof., Nat. Univ., School of Mines, A. A. 75267, Medellin, Colombia.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share