TECHNICAL NOTES
Oct 1, 2006

Optimal Design of Open Channel Section Incorporating Critical Flow Condition

Publication: Journal of Irrigation and Drainage Engineering
Volume 132, Issue 5

Abstract

The flow at critical condition of an open channel is unstable. At critical condition, a small change in specific energy will cause abrupt fluctuation in water depth of the channel. This is because the specific energy curve is almost vertical at critical state. Therefore, if the design depth of the channel is near or equal to critical depth of the channel, the shape of the channel must be altered to avoid a large fluctuation in water depth. In the present study, a nonlinear optimization model is presented for designing an optimal channel section incorporating the critical flow condition of the channel. The optimization model derives the optimal channel section at a desirable difference from the critical condition of the channel so that a small change in the specific energy of the channel will not cause an abrupt change in flow depth. The objective of the optimization model is to minimize the total construction costs of the channel. Manning’s equation is used to specify the uniform flow condition in the channel. The developed optimization model is solved by sequential quadratic programming using MATLAB. Applicability of the model is demonstrated for a trapezoidal channel section with composite roughness. However, it also can be extended to other shapes of channel.

Get full access to this article

View all available purchase options and get full access to this article.

References

Babaeyan-Koopaei, K., Valentine, E. M., and Swailes, D. C. (2000). “Optimal design of parabolic-bottomed triangle canals.” J. Irrig. Drain. Eng., 126(6), 408–411.
Chanson, H., and Montes, J. S. (1995). “Characteristics of undular hydraulic jump: Experimental apparatus and flow patterns.” J. Hydraul. Eng., 121(2), 129–144.
Chow, V. T. (1959). Open channel hydraulics, McGraw-Hill, New York.
Das, A. (2000). “Optimal channel cross section with composite roughness.” J. Irrig. Drain. Eng., 126(1), 68–72.
Froehlich, D. C. (1994). “Width and depth constrained best trapezoidal section.” J. Irrig. Drain. Eng., 120(4), 828–835.
Guo, C., and Hughes, W. C. (1984). “Optimal channel cross section with freeboard.” J. Irrig. Drain. Eng., 110(3), 304–314.
Horton, R. E. (1933). “Separate roughness coefficients for channel bottom and sides.” Eng. News-Rec., 111(22), 652–653.
Jain, A., Bhattacharjya, R. K., and Srinivasulu, S. (2004). “Optimal design of composite channels using genetic algorithm.” J. Irrig. Drain. Eng., 130(4), 286–295.
Loganathan, G. V. (1991). “Optimal design of parabolic canals.” J. Irrig. Drain. Eng., 117(5), 716–735.
Mironenko, P. A., Willardson, L. S., and Jenab, S. A. (1984). “Parabolic canal design and analysis.” J. Irrig. Drain. Eng., 110(2), 241–246.
Monadjemi, P. (1994). “General formation of best hydraulic channel section.” J. Irrig. Drain. Eng., 120(1), 27–35.
Ohtsu, I., Yasuda, Y., and Gotoh, H. (2003). “Flow condition of undular hydraulic jump in horizontal rectangular channels.” J. Hydraul. Eng., 129(10), 948–955.
Swamee, P. K., Mishra, G. C., and Chahar, B. R. (2000). “Design of minimum seepage loss canal sections.” J. Irrig. Drain. Eng., 126(1), 28–32.

Information & Authors

Information

Published In

Go to Journal of Irrigation and Drainage Engineering
Journal of Irrigation and Drainage Engineering
Volume 132Issue 5October 2006
Pages: 513 - 518

History

Received: Nov 9, 2004
Accepted: Sep 30, 2005
Published online: Oct 1, 2006
Published in print: Oct 2006

Permissions

Request permissions for this article.

Authors

Affiliations

Rajib Kumar Bhattacharjya
Assistant Professor, Dept. of Civil Engineering, National Institute of Technology, Silchar-788 010, Assam, India. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share