TECHNICAL PAPERS
Nov 15, 2004

Coupled Crop and Solid Set Sprinkler Simulation Model. I: Model Development

This article has a reply.
VIEW THE REPLY
Publication: Journal of Irrigation and Drainage Engineering
Volume 130, Issue 6

Abstract

The development of a coupled crop model (Ador-Crop) and solid set sprinkler irrigation model (Ador-Sprinkler) is reported in this work. The crop model incorporates many of the features developed in the well-known CropWat model. Improvements include the use of thermal time and the input of daily ET0. The solid set sprinkler model applies ballistic theory to determine water distribution resulting from water droplets subjected to a wind vector. Regarding the validation of the coupled model (AdorSim), the plot of soil available water versus measured and simulated yield reduction resulted in similar features. AdorSim explained 25% of the variability in measured yield reduction. Most of the unexplained variability is due to the effect of nonwater-related factors affecting crop yield. In a companion paper, AdorSim is used to investigate optimum water management options in the middle Ebro basin in the NE of Spain.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. ( 1998). “Crop evapotranspiration: Guidelines for computing crop water requirements.” FAO irrigation and drainage paper 56, Rome, Italy.
2.
Brisson, N., and Mary, B. ( 1999). “STICS version 4.0. Modèle de simulation de culture, bilan hydrique et bilan azoté.” Notice concepts et formalismes (in French).
3.
Cabelguenne, M. ( 1996). “Tactical irrigation management using real time EPIC-phase model and weather forecast: Experiment on maize.” Irrigation scheduling from theory to practice (Water Reports), FAO, Rome, 185–193.
4.
Carrión, P., Tarjuelo, J. M., and Montero, J. (2001). “SIRIAS: A simulation model for sprinkler irrigation. I. Description of the model.” Irrig. Sci., 20, 73–84.
5.
Cavero, J., Farré, I., Debaeke, P., and Faci, J. M. (2000). “Simulation of maize yield under water stress with the EPICphase and CROPWAT models.” Agron. J., 92(4), 679–690.
6.
Cavero, J., Playán, E., Zapata, N., and Faci, J. M. (2001). “Simulation of maize grain yield variability within a surface-irrigated field.” Agron. J., 93(4), 773–782.
7.
Christiansen, J. E. ( 1942). “Irrigation by Sprinkling.” Agricultural Experimental Station Bulletin 670, Univ. of California at Berkeley, Berkeley, Calif.
8.
Clarke, D., Smith, M., and El Askari, K. ( 1998). CropWat for Windows: User guide, FAO, Rome.
9.
Dechmi, F., Playán, E., Cavero, J., Faci, J. M., and Martínez-Cob, A. (2003). “Wind effects on solid set sprinkler irrigation depth and corn yield.” Irrig. Sci., 22, 67–77.
10.
de Juan, J. A., Tarjuelo, J. M., Valiente, M., and García, P. (1996). “Model for optimal cropping patterns within the farm based on crop water production functions and irrigation uniformity. I: Development of a decision model.” Agric. Water Manage., 31, 115–143.
11.
Doorenbos, J., and Kassam, A. H. ( 1979). “Efectos del agua sobre el rendimiento de los cultivos.” Food and Agriculture Organisation of the United Nations, Irrigation and drainage Paper 33, Rome, Italy (in Spanish).
12.
Faci, J., and Bercero, A. (1991). “Efecto del viento en la uniformidad y en las pérdidas por evaporación y arrastre en el riego por aspersión.” Invest. Agrar., Prod. Prot. Veg., 6(2), 171–182 (in Spanish).
13.
Fukui, Y., Nakanishi. K., and Okamura, S. (1980). “Computer evaluation of sprinkler irrigation uniformity.” Irrig. Sci., 2, 23–32.
14.
Gallagher, J. N. (1979). “Field studies of cereal leaf growth.” J. Exp. Bot., 30(117), 625–636.
15.
Hills, D., and Gu, Y. (1989). “Sprinkler volume mean droplet diameter as a function of pressure.” Trans. ASAE, 32, 471–476.
16.
Jones, C.A., and Kiniry, J.R. ( 1986). CERES-maize: A simulation model of maize growth and development, Texas A&M University Press, College Station, Tex.
17.
Kincaid, D. C., Solomon, K. H., and Oliphant, J. C. (1996). “Drop size distributions for irrigation sprinklers.” Trans. ASAE, 39(3), 839–845.
18.
Li, J. (1998). “Modeling crop yield as affected by uniformity of sprinkler irrigation system.” Agric. Water Manage., 38, 135–146.
19.
Li, J., Kawano, H., and Yu, K. (1994). “Droplet size distributions from different shaped sprinkler nozzles.” Trans. ASAE, 37(6), 1871–1878.
20.
Mantovani, E. C., Villalobos, F. J., Orgaz, F., and Fereres, E. (1995). “Modeling the effects of sprinkler irrigation uniformity on crop yield.” Agric. Water Manage., 27, 243–257.
21.
Merriam, J.L., Sheare, M.N., and Burt, C.M. ( 1980). “Evaluating irrigation systems and practices.” Design and operation of farm irrigation systems, M. E. Jensen, ed., ASAE, St. Joseph, Mich., 721–776.
22.
Montero, J. ( 1999). “Análisis de la distribución de agua en sistemas de riego por aspersión estacionario. Desarrollo del modelo de simulación de riego por aspersión (SIRIAS).” doctoral Thesis, Univ. de Castilla-la Mancha, Albacete, Spain (in Spanish).
23.
Montero, J., Tarjuelo, J. M., and Carrión, P. (2001). “SIRIAS: a simulation model for sprinkler irrigation. II. Calibration and validation of the model.” Irrig. Sci., 20, 85–98.
24.
Or, D., and Hanks, R. J. (1992). “Soil water and crop yield spatial variability induced by irrigation nonuniformity.” Soil Sci. Soc. Am. J., 56, 226–233.
25.
Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T. ( 1988). Numerical recipes in C, Cambridge University Press, Cambridge, U.K.
26.
Seginer, I., Kantz, D., and Nir D. (1991). “The distortion by wind of the distribution patterns of single sprinklers.” Agric. Water Manage., 19, 314–359.
27.
Smith, M. ( 1993). “CropWat. Programa de ordenador para planificar y manejar el riego.” Estudio FAO riego y drenaje n° 46 (in Spanish).
28.
Smith, M., et al. ( 1996). “Irrigation scheduling: From theory to practice.” FAO Water Rep. 8, ICID and FAO, Rome.
29.
Solomon, K.H. ( 1983). “Irrigation uniformity and yield theory.” PhD thesis, Agricultural and Irrigation Engineering Dept., Utah State Univ., Logan, Utah.
30.
Stern, J., and Bresler, E. (1983). “Nonuniform sprinkler irrigation and crop yield.” Irrig. Sci., 4, 17–29.
31.
Stewart, J. I., et al. ( 1977). “Optimizing crop production through control of water and salinity levels.” Utah Water Research Laboratory PRWG 151-1.
32.
Stockle, C. O., Martín, S. A., and Campbell, G. S. (1994). “CropSyst, a cropping systems simulation model: water/nitrogen budgets and crop yield.” Agric. Syst., 46, 335–359.
33.
Tarjuelo, J. M., Carrión, P., and Valiente, M. (1994). “Simulación de la distribución del riego por aspersión en condiciones de viento.” Invest. Agrar., Prod. Prot. Veg., 9(2), 255–272 (in Spanish).
34.
Tarjuelo, J. M., Valiente, M., and Lozoya, J. (1992). “Working conditions of sprinkler to optimize application of water.” J. Irrig. Drain. Eng., 118(6), 895–913.
35.
Von Bernuth, R. D. (1988). “Effect of trajectory angle on performance of sprinklers in wind.” J. Irrig. Drain. Eng., 114(4), 579–587.
36.
Von Bernuth, R. D., and Gilley, J. R. (1984). “Sprinkler droplet size distribution estimation from single leg data.” Trans. ASAE, 27(5), 1435–1441.
37.
Vories, E. D., Von Bernuth, R. D., and Mickelson, R. H. (1987). “Simulating sprinkler performance in wind.” J. Irrig. Drain. Eng., 113(1), 119–130.
38.
Warrick, A. W., and Gardner, W. R. (1993). “Crop yield as affected by special variations of soil and irrigation.” Water Resour. Res., 19, 181–186.
39.
Williams, J. R., Jones, C. A., and Dyke, P. T. (1984). “A modeling approach to determining the relationship between erosion and soil productivity.” Trans. ASAE, 27, 129–144.

Information & Authors

Information

Published In

Go to Journal of Irrigation and Drainage Engineering
Journal of Irrigation and Drainage Engineering
Volume 130Issue 6December 2004
Pages: 499 - 510

History

Published online: Nov 15, 2004
Published in print: Dec 2004

Permissions

Request permissions for this article.

Authors

Affiliations

F. Dechmi
Graduate Student, Dept. Genetics and Plant Production, Laboratory for Agronomy and Environment (DGA-CSIC), Estación Experimental de Aula Dei, CSIC, Apdo. 202, 50080 Zaragoza, Spain. E-mail: [email protected]
E. Playán, M.ASCE
Tenured Scientist, Dept. Genetics and Plant Production, Laboratory for Agronomy and Environment (DGA-CSIC), Estación Experimental de Aula Dei, CSIC, Apdo. 202, 50080 Zaragoza, Spain (corresponding author). E-mail: [email protected]
J. Cavero
Tenured Scientist, Dept. Genetics and Plant Production, Laboratory for Agronomy and Environment (DGA-CSIC), Estación Experimental de Aula Dei, CSIC, Apdo. 202, 50080 Zaragoza, Spain. E-mail: [email protected]
A. Martínez-Cob
Tenured Scientist, Dept. Genetics and Plant Production, Laboratory for Agronomy and Environment (DGA-CSIC), Estación Experimental de Aula Dei, CSIC, Apdo. 202, 50080 Zaragoza, Spain. E-mail: [email protected]
J. M. Faci
Researcher, Dept. of Soils and Irrigation, Laboratory for Agronomy and Environment (DGA-CSIC), Centro de Investigación y Tecnología Agroalimentaria, DGA, Apdo. 727, 50080 Zaragoza, Spain. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share