TECHNICAL PAPERS
Sep 1, 1993

Geochemical Factors Affecting Trace Element Mobility

Publication: Journal of Irrigation and Drainage Engineering
Volume 119, Issue 5

Abstract

The mobility of trace elements in soil reflects the chemical reactivity of the elements in the soil matrix. The result is that trace‐element mobility is both specie and site dependent. An overview of selected geochemical factors that influence the concentration of trace elements in the soil solution is presented. Factors affecting both cationic and anionic trace‐element mobility are given in the context of multiphase equilibria. Chemical processes such as ion exchange, adsorption, solid‐phase formation, and redox are considered and related to control of trace‐element concentration in solution and hence their mobility in soil. The limitations inherent in the use of a thermodynamic database for determining partition functions used in solute transport modeling are emphasized. The importance of microbially mediated biomethylation of trace elements such as Pb, Hg, Cd, and Se is discussed.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Adriano, D. C. (1986). Trace elements in the terrestrial environment. Springer‐Verlag, New York, N.Y.
2.
Amacher, M. C. (1991). “Methods of obtaining and analyzing kinetic data.” Rates of Soil Chemical Processes, D. L. Sparks and D. L. Suarez, eds., Soil Sci. Society of America Inc., Madison, Wisc.
3.
Ball, J. W., and Nordstrom, D. K. (1991). “User's manual for WATEQ4F, with revised thermodynamic data base for calculating speciation of major, trace and redox elements in natural waters.” U.S. Geological Survey, Open‐File Report 91‐183, U.S. Geological Survey, Menlo Park, Calif.
4.
Bloom, P. R. (1981). “Metal‐organic matter interactions in soil.” Chemistry in the Soil Environment, American Society of Agronomics, Madison, Wisc.
5.
Bowman, R. S., Essingtom, M. E., and O'Connor, G. A. (1981). “Soil sorption of nickel: Influence of solution composition.” Soil Sci. Soc. Am. J., 45(5), 860–865.
6.
Brams, E., Anthony, W., and Weatherspoon, L. (1989). “Biological monitoring of an agricultural food chain: Soil cadmium and lead in ruminant tissues.” J. Envir. Quality, 18(3), 317–323.
7.
Carski, T. H., and Sparks, D. L. (1985). “A modified miscible displacement technique for investigation of adsorption‐desorption kinetics in soils.” Soil Sci. Soc. Am. J., 49(1), 114–116.
8.
Cataldo, D. A., Wildunf, R. E., and Garland, T. R. (1987). “Speciation of trace inorganic contaminant in plants and bioavailability: An overview.” J. Envir. Quality, 16(4), 289–295.
9.
Chau, Y. K. (1986). “Organic group IV elements in the environment.” Organometallic Compounds in the Environment, P. J. Craig, ed., Longman Group Ltd., Essex, England.
10.
Cheng, C. N., and Focht, D. D. (1979). “Production of arsine and methyl arsines in soils and in culture.” Appl. Envir. Microbiol., 38(3), 494–498.
11.
Corey, R. B. (1981). “Adsorption vs precipitation.” Adsorption of Inorganics at Soil‐Liquid Interfaces, M. A. Anderson and A. J. Rubin, eds., Ann Arbor Sci., Ann Arbor, Mich.
12.
Craig, P. J. (1986). “Occurrence and pathways of organometallic compounds in the environment.” Organometallic Compounds in the Environment, P. J. Craig, ed., Longman Group Ltd., Essex, England.
13.
Davis, J. A., and Leckie, J. O. (1979). “Speciation of adsorbed ions at the oxide/water interface.” Chemical Modeling in Aqueous Systems. W. A. Jenne, ed., American Chemical Society, Washington, D.C.
14.
Deveral, S. J., Gilliom, R. J., Fugii, R., Izbicki, J. A., and Fields, J. C. (1984). “Areal distribution of selenium and other inorganic constituents in shallow ground‐water of the San Luis Drain Service Area, San Joaquin Valley, California: A preliminary study.” U. S. G. S. Water Res. Invest. Report, 84‐4319, U.S. Geological Survey, Sacramento, Calif.
15.
Deveral, S. J., and Millard, S. P. (1988). “Distribution and mobility of selenium and other trace elements in shallow groundwater of the western San Joaquin Valley, California.” Environ. Sci. Tech., 22(6), 697–702.
16.
Doran, J. W. (1982). “Microorganisms and the biological cycling of selenium.” Adv. Microb. Ecol., 6(1), 1–31.
17.
Doran, J. W., and Alexander, M. (1976). “Microbial formation of volatile selenium compounds in soil.” Soil Sci. Soc. Am. J., 40(5), 687–690.
18.
Drever, J. I. (1988). The geochemistry of natural waters. 2nd Ed., Prentice‐Hall, Inc. N.J.
19.
Felmy, A. R., Girvin, D. C., and Jenne, E. A. (1984). “MINTEQ: A computer program for calculating aqueous geochemical equilibria.” (NTIS PB84‐157155) EPA‐600/3‐84‐032, Nat. Tech. Info. Service, Springfield, Va.
20.
Forbes, E. A., Posner, A. M., and Quirk, J. P. (1976). “The specific adsorption of divalent Cd, Co, Cu, Pb, and Zn on goethite.” J. Soil. Sci., 27(2), 154–166.
21.
Frankenberger, W. T. Jr., and Karlson, U. (1989). “Environmental factors affecting microbial production of dimethylselenide in a selenium‐contaminated sediment.” Soil Sci. Soc. Am. J., 53(5), 1435–1442.
22.
Fujii, R., and Deveral, S. J. (1989). “Mobility and distribution of seleniuim and salinity in groundwater and soil of drained agricultural fields, western San Joaquin valley of California.” Selenium in Agriculture and the Environment, Soil Sci. Society of America, Madison, Wisc.
23.
Fujii, R., Deveral, S. J., and Hatfield, D. B. (1988). “Distribution of selenium in soils of agricultural fields, western San Joaquin Valley, California.” Soil Sci. Soc. Am. J., 52(5), 1274–1283.
24.
Gee, G. W., Rai, D., and Serne, R. J. (1983). “Mobility of radionuclides in soil.” Chemical Mobility and Reactivity in Soil Systems, Soil Sci. Society of America, Madison, Wisc.
25.
Gilliom, R. J., Beliz, K., Heimes, F. J., Dubrovsky, N. M., Deveral, S. J., Fio, J. L., Fujii, R., and Clifton, D. G. (1989). “Preliminary assessment of sources, distribution, and mobility of selenium in the San Joaquin Valley, California.” U. S. G. S. Water Resource Investig. Report 88‐4186, U.S. Geological Survey, Sacramento, Calif.
26.
Goldberg, S., and Glaubig, R. A. (1988). “Ion adsorption on a calcareous montmorillonitic soil‐selenium.” Soil Sci. Soc. Am. J., 52(4), 954–958.
27.
Goldberg, S., and Sposito, G. (1984). “A chemical model of phosphate adsorption by soils. I. Reference oxide minerals.” Soil. Sci. Soc. Am. J., 48(4), 772–778.
28.
Grattan, S. R., and Rhoades, J. D. (1990). “Use of saline drainage water for irrigation.” Agricultural Salinity Assessment and Management, K. K. Tanji, ed., ASCE, New York, N.Y.
29.
Harter, R. D., and Baker, D. E. (1977). “Application and misapplication of the Langmuir equation in soil adsorption phenomena.” Soil Sci. Soc. Am. J., 41(6), 1077–1080.
30.
Hassler, R. A., Klein, D. A., and Meglen, R. R. (1984). “Microbial contributions to soluble and volatile arsenic dynamics in retorted oil shale.” J. Envir. Qual., 13(3), 466–470.
31.
Hendrickson, L. L., and Corey, R. B. (1981). “Effect of equilibrium metal concentrations on apparent selectivity coefficients of soil complexes.” Soil Sci., 131(3), 163–171.
32.
Hingston, F. J. (1981). “A review of anion adsorption.” Adsorption of Inorganics at Soil‐Liquid Interfaces, M. A. Anderson and A. J. Rubin, eds., Ann Arbor Sci., Ann Arbor, Mich.
33.
Jardine, P. M. (1991). “Modeling nonequilibrium reactions of inorganic solutes in soil columns.” Rates of Soil Chemical Processes, D. L. Sparks and D. L. Suarez, ed., Soil Sci. Society of America, Inc., Madison, Wisc.
34.
Jenne, E. A. (1977). “Trace element sorption by sediments and soils: Sites and processes.” Symp. on Molybdenum in the Environment, Marcel‐Dekker, Inc., New York, N.Y.
35.
Jury, W. A., Sposito, G., and White, R. E. (1986). “A transfer‐function model of solute transport through soil.” Water Resour. Res., 22(2), 243–247.
36.
Karlson, U., and Frankenberger, W. T. Jr. (1989). “Accelerated rates of selenium volatilization from California soils.” Soil. Sci. Soc. Am. J., 53(3), 749–753.
37.
Karlson, U., and Frankenberger, W. T. Jr. (1988). “Effects of carbon and trace element on alkyselenide production by soil.” Soil Sci. Soc. Am. J., 52(6), 1640–1644.
38.
Krauskoft, K. B. (1979). Introduction to Geochemistry, 2nd Ed., McGraw‐Hill, New York, N.Y.
39.
Landra, E. R. (1978). “Microbial aspects of the volatile loss of applied mercury(II) from soils.” J. Envir. Quality, 7(1), 84–86.
40.
Langmuir, D. (1978). “Uranium solution‐mineral equilibria at low temperatures with applications to sedimentary ore deposits.” Geochim. Cosmochim. Acta., 42(6), 547–569.
41.
Masscheleyn, P. H., Delaune, R. R., and Patrick, W. H. Jr. (1991a). “Arsenic and selenium chemistry as affected by sediment redox potential and pH.” J. Envir. Quality 20(3), 522–527.
42.
Masscheleyn, P. H., Delaune, R. R., and Patrick, W. H. Jr. (1991b). “Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil.” Envir. Sci. Tech., 25(8), 1414–1419.
43.
Matthess, G. (1984). “Unsaturated zone pollution by heavy metals.” Pollutants in Porous Media, B. Yaron, G. Dagan, and J. Goldschmid, eds., Springer‐Verlag, New York, N.Y.
44.
Motta, M., and Miranda, C. F. (1989). “Molybdate adsorption on kaolinite, montmorillonite and illite: Constant capacitance modeling.” Soil Sci. Soc. Am. J., 53(2), 380–385.
45.
Murphy, L. S., and Walsh, L. M. (1972). “Correction of micronutrient deficiencies with fertilizers.” Micronutrients in Agriculture, J. J. Mortvedt, P. M. Giordano, and W. L. Lindsay, eds., Soil Sci. Society America, Madison, Wisc.
46.
Neal, R. H., Sposito, G., Holtzclaw, H., and Traina, S. J. (1987a). “Selenite adsorption on alluvial soils. I. Soil composition and pH effects.” Soil Sci. Soc. Am. J., 51(5), 1161–1165.
47.
Neal, R. H., Sposito, G., Holtzclaw, H., and Traina, S. J. (1987b). “Selenite adsorption on alluvial soils. II. Solution composition effects.” Soil Sci. Soc. Am. J., 51(5), 1165–1169.
48.
Page, A. L., Chang, A. C., Sposito, G., and Mattigod, S. V. (1981). “Trace elements in waste water: Their effects on plant growth and composition and their behavior in soils.” Modeling Wastewater and Land Treatment. I. K. Iskander, ed., Wiley Intersci., New York, N.Y.
49.
Pitzer, K. S. (1979). “Theory: Ion interaction approach.” Activity Coefficients in Electrolyte Solutions, Vol. 1, R. M. Pytkowicz, ed., CRC Press, Boca Raton, Fla.
50.
Rogers, R. D. (1976). “Methylation of mercury in agricultural soils.” J. Envir. Quality, 5(4), 454–458.
51.
Rosenfeld, I., and Beath, O. A. (1964). Selenium geobotany, biochemistry, toxicity, and nutrition, Academic Press, New York, N.Y.
52.
Ryan, J. A., Pahren, H. R., and Lucas, J. B. (1982). “Controlling cadmium in the human food chain: A review and rationale based on health effects.” Envir. Res., 28(2), 251–302.
53.
Schindler, P. W. (1981). “Surface complexes at oxide water interfaces.” Adsorption of Inorganics at Solid‐Liquid Interfaces, M. A. Anderson and A. J. Rubin, eds., Ann Arbor Sci., Ann Arbor, Mich.
54.
Schnitzer, M. (1978). “Humic substances: Chemistry and reactions.” Soil Organic Matter, M. Schnitzer and S. U. Khan, eds., Elsevier, New York, N.Y.
55.
Seyfried, M. S., Sparks, D. L., Bar‐Tal, A., and Feigenbaum, S. (1989). “Kinetics of calcium‐magnesium exchange on soil using a stirred flow reaction chamber.” Soil Sci. Soc. Am. J., 53(2), 406–410.
56.
Skopp, J. (1986). “Analysis of time dependent chemical processes in soil.” J. Envir. Quality, 15(3), 205–213.
57.
Sparks, D. L. (1989). The kinetics of soil chemical processes. Academic Press, Inc., New York, N.Y.
58.
Sparks, D. J., and Suarez, D. L., eds. (1991). “Rates of soil chemical processes.” Soil Sci. Society of America Special Publication No. 27, Soil Sci. Society of America Inc., Madison, Wisc.
59.
Underwood, E. J. (1977). Trace elements in human and animal nutrition. Academic Press, New York, N.Y.
60.
Veith, J. A., and Sposito, G. (1977). “On the use of the Langmuir equation in the interpretation of adsorption phenomena.” Soil Sci. Soc. Am. J., 41(4), 697–702.
61.
Woolson, E. A. (1976). “Generation of alkylarsines from soil.” Weed Sci., 25(5), 412–416.
62.
Zachara, J. M., Ainsworth, C. C., Cowan, C. C., and Resch, C. T. (1989). “Adsorption of chromate by subsurface soil horizons.” Soil Sci. Soc. Am. J., 53(2), 418–428.

Information & Authors

Information

Published In

Go to Journal of Irrigation and Drainage Engineering
Journal of Irrigation and Drainage Engineering
Volume 119Issue 5September 1993
Pages: 848 - 867

History

Received: Jul 29, 1992
Published online: Sep 1, 1993
Published in print: Sep 1993

Permissions

Request permissions for this article.

Authors

Affiliations

J. J. Jurinak
Prof., Dept. of Plants, Soils, and Biometeorology, Utah State Univ., Logan, UT 84322
K. K. Tanji, Member, ASCE
Prof., Dept. of Land, Air, and Water Resour., Univ. of California, Davis, CA 95616

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share